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ABSTRACT: ESA’s JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined 

for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary 

formation and the emergence of life and how does the solar system work. The JANUS camera, 

an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed 

by Teledyne e2v.  

JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, 

electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. 

The degradation of 4T CMOS device performance following proton fluences is being studied, as 

well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for 

the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in 

previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any 

annealing following the irradiation as well as to study the evolution of any performance 

characteristics.  

CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement 

damage radiation (2x1010 protons, 10 MeV equivalent). Following this, devices have undergone 

a thermal anneal cycle at 100 °C for 168 hours to reveal the extent to which CIS115 recovers pre-

irradiation performance. Dark current activation energy analysis following proton fluence gives 

information on trap species present in the device and how effective anneal is at removing these 

trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark 

current following irradiation.  
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1. Introduction 

The JUpiter ICy Moons Explorer (JUICE) mission is a European Space Agency (ESA) 

flagship L-class mission scheduled for launch in 2022 [1]. The mission will arrive in the Jovian 

system in 2030 where scientific instruments on-board will complete a detailed investigation of 

the system with two main scientific objectives [1]: 

 ‘What are the conditions for planet formation and the emergence of life?’ 

 ‘How does the solar system work?’ 

The mission will do this by characterising Ganymede, Europa and Callisto as planetary 

objects and potential habitats. In addition the JUICE mission will explore the Jovian system to 

obtain a profile for the behaviour of other gas giants present in our universe. JUICE will carry 

eleven scientific instruments, with the optical imaging instrument JANUS (Jovis, Amorum ac 

Natorum Undique Scrutator) [2] being designed to map the three main Galilean moons with a 

resolution from around 400 m to <10 m per pixel [1]. 

The JANUS instrument consists of a main optical head unit, a proximity electronics unit and 

a main electronics unit that is located in the spacecraft radiation vault for camera control and 

power supply. The optical head unit includes the telescope optics and mounting structure, and a 

filter wheel to provide multispectral observations of the Jovian system using a greyscale detector 

[2].  

1.1 The detector for JANUS 

The CIS115, selected as the solid state imager on JANUS, is a four-transistor (4T) back 

illuminated CMOS image sensor developed by Teledyne e2v [3]. It is a three-megapixel device 

with a sensitive image area of 2000 rows by 1504 columns. The CIS115 is fabricated in the 



 

 
– 2 – 

TowerJazz Semiconductor’s 0.18 µm process with 7 µm square pixels [3] providing a field of 

view of 15 µrads pixel-1 and a total field of view of 1.72° by 1.29° [4]. 

As a result of Jupiter’s magnetic field, a trapped particle population is present in the Jovian 

system. Due to Jupiter’s size and distance from the Sun, this magnetic field is largely unaffected 

by solar wind pressure and encompasses all of the Galilean satellites [5]. These trapped particles 

consist of electrons and protons, with the magnetosphere also interacting with and ionizing high 

speed streams of dust particles emitted from the surface of Io, creating a stream of heavy ions 

within the Jovian system [6]. Along with these particles, high-energy photons make up the rest of 

the irradiative sources within the system, all of which will interact with instruments on the JUICE 

mission. The Jupiter Icy Moons Explorer will be present within this environment from January 

2030 to June 2033 and in this time the JANUS camera is expected to accumulate an End of Life 

(EOL) non-ionizing fluence equivalent to 1010 10 MeV protons cm-2. CIS115 radiation 

qualification can recognise and measure changes in key performance parameters that will occur 

over the mission lifetime to approve mission specifications for camera performance. 

2. Radiation Damage Effects in Silicon 

Displacement damage effects in a silicon detector can occur in the presence of high-energy 

protons incident on the device. These high energy protons (or heavier ions) can displace atoms 

from the lattice creating defects [7] that can act as traps for electrons between the conduction and 

valence bands. Typically these lattice defects manifest themselves as vacancies and interstitials 

and combinations of these displaced atoms (known as Frenkel pairs) form defects known as 

divacancies [8]. In addition to these divacancies, further defects can also be generated in Si 

detectors due to the presence of dopants or impurities in the material. When vacancies and 

interstitials neighbour these impurities, defect-impurity complexes can occur [8] one of which is 

the vacancy-phosphorus pair also known as the ‘E centre’ with an acceptor energy level of 

0.45 eV and a donor level of 0.27 eV [9]. These energy levels can act as intermediate states for 

electrons and can contribute to increased dark current levels [10, 11] which could impact the 

performance of the CIS115 in the JANUS camera  by degrading the background noise. This study 

investigates the influence of proton displacement damage on the dark current of the CIS115 to 

understand the activation energy of typical dark current defects formed. 

3. Experimental Details 

3.1 Proton irradiation campaign 

The proton radiation test campaign for the CIS115 included the irradiation of devices to three 

different proton fluences plus a control device. The devices were characterised before and after 

irradiation in the laboratory to measure any changes in performance characteristics due to the 

irradiation. Subsequently, three of the four irradiated devices underwent a thermal anneal at 

100 °C for 168 hours and were characterised again. This paper concerns itself with the change in 

characteristics of the three devices that were annealed (Table 1).  

 

 

 

 

 

 



 

 
– 3 – 

Table 1: Device serial number and total device fluence. 

Device serial 
Effective fluence, 

10 MeV p/cm2 

Equivalent JANUS 

mission fluence (protons) 

CIS115 15901 10 12 5 x 109 Half EOL 

CIS115 15901 10 13 1 x 1010 EOL 

CIS115 15901 10 19 2 x 1010 Twice EOL 

 

The proton irradiation was performed at the Proton Irradiation Facility at PSI, Switzerland. 

The beam flux at irradiation provided 1 x 107 protons cm-2
 at an energy of 72.8 MeV considered 

to be accurate to 5 %. Devices were held at room temperature for irradiation and unbiased during 

the irradiation and annealing stages. 

3.2 Dark Signal 

Dark signal arises from the thermal generation of carriers in the semiconductor from a region 

within or at the band gap of the material used. In this study, dark signal was measured by 

averaging 10 images recorded at the same integration time in dark conditions. Image sets were 

collected over a range of integration times to allow the dark current to be calculated for each pixel 

in the device. Dark current measurements between 30 ˚C and 40 ˚C (in 2.5 °C increments) were 

studied here. 

3.3 Activation Energy 

The temperature dependence of dark current density 𝐽𝑑 follows an Arrhenius law (1),  

 𝐽𝑑 ∝ exp(−𝐸𝑎 𝑘𝑇)⁄      (1) 

 

where 𝑘 is the Boltzmann constant and 𝑇 is the absolute temperature and 𝐸𝑎 is the activation 

energy 

4. Results 

4.1 Dark Current Increase with Irradiation 

Previous studies of the CIS115 have shown an increase in the dark signal in the device 

following displacement damage in the detector [12]. The pixel-by-pixel dark current distributions, 

as measured at 40 °C, are shown in Figure 1. It supports the expectation of an increase in dark 

current following high energy proton irradiation. It also shows dark current increase can be 

correlated with proton fluence, with greater proton fluence resulting in a greater mean value of 

dark current present in the device. Figure 2 identifies that the mean value of dark current in the 

device scales linearly with total proton fluence, with twice the fluence resulting in around twice 

the mean dark current. This is found to support the findings shown in [13]  where the relationship 

in equation (2)  is presented 

 ∆𝐽𝑑 𝛼𝐷𝑑 (2) 

 

where ∆𝐽𝑑 is the change of the radiation induced dark current density and 𝐷𝑑 is the displacement 

damage dose.  It also documents that the recovery of pre radiation dark current following a thermal 

anneal has a near identical relative effectiveness, highlighting the anneal characteristics are 



 

 
– 4 – 

independent of the proton fluence.  Moreover, furthering on from the work of [12], Figure 2 shows 

that following a thermal anneal the mean value of dark current is decreased for each of the 

irradiated devices.  

 

 

Figure 1: Dark current at 40 °C of each device pre irradiation, post irradiation and post anneal 

comparing the response of different fluence on dark current. 

 

 
 

Figure 2: Mean dark current at 40 °C of studied devices. 
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4.2 Activation Energy   

Before irradiation, the majority of dark current is expected to be generated from diffusion 

current, and therefore the activation energy of the dark current is limited by the band gap of silicon 

(1.12 eV) [14, 15]. This behaviour is seen in the data collected here (Figure 3), where before 

irradiation, all three devices exhibit almost identical dark current activation energy with a peak 

occurring at around 1.19 eV (close to the silicon band gap). This identifies that before irradiation 

the devices can be assumed to be predominantly defect free such that following a proton fluence 

the likelihood of introducing defects into the pixel increases. These defects manifest themselves 

as activation energies within the band gap of silicon. Along with the peak occurring at around the 

silicon band gap the pre irradiation plot in Figure 3 shows two other distinct peaks occurring at 

around 1 eV and a further one at around 0.7 eV. The peak at around 0.7 eV can be attributed to 

dark current generation from mid band sites [16] .  

Following proton irradiation, a correlation between the total EOL equivalent fluence, and 

the shift in dark current activation energy can be seen in Figure 3. In addition to this, the proton 

irradiation has significantly reduced the dark current population at activation energy of the band 

gap of silicon whilst increasing the number of pixels with dark current activation energy of 

approximately 1 eV. It can be deemed that this increase is due to the creation of radiation-induced 

defects, which have also increased the population present with mid-band activation energies.  

Furthermore, it is observed that the number of irradiation-induced defects present in the devices, 

and the subsequent reduction of dark current activation energy at the silicon band gap scales with 

proton fluence. 

Following thermal anneal, Figure 3 shows the narrowing of these radiation-induced peaks. 

Before anneal, a broad range of dark current trap species may be present, which results in a wider 

spread of activation energies in the pixels. During annealing at 100 ˚C, less stable traps (with 

annealing energies below 0.032 eV) may anneal or migrate to form stable species, such as those 

observed around 0.7 eV and 1 eV. Following anneal, the fewer types of dark current trap species 

with discrete activation energies may be present in each pixel, making the peaks observed in 

Figure 3 narrower. 

 

Figure 3: Dark current activation energy of devices pre radiation, post radiation and post anneal. 
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5. Conclusions 

The results from the proton irradiation of CIS115 devices shows an increase in dark current 

proportional to the incident proton fluence. Pre-irradiation values of dark current have a maximum 

value of approximately 1000 pA/cm2, however the population at this value is in the 10s of pixels. 

Following a proton fluence however of half EOL, EOL and even twice EOL there is anywhere in 

the region of 102 to 103 pixels with dark current at this level and beyond (measured at 40 ̊ C). Dark 

current defects induced by the radiation damage have a continuum of activation energies, but 

defect species with energies around 0.7 eV and 1 eV have been observed to increase in population 

with fluence. 

Thermal annealing has shown no drastic recovery in dark current response of the device 

which is supported by [8]. Interrogation of the dark current activation energies suggested that, 

following proton exposure the primary dark current defects (with activation energies around 

0.7 eV and 1 eV) in the device cannot be annealed at 373 K for 168 hours. This conclusion is in 

agreement with the work of Cohen and David [11], however the activation energy distribution 

has been altered following thermal annealing. No candidate for a trap species at approximately 

0.1 to 0.2 eV from the conduction band can be identified but the likely source may be bulk traps 

near to the band edges. Further investigation into this peak in activation energy will be required. 

Sources of defects that can occur during the TowerJazz 0.18 µm process, could be responsible for 

the activation energy peak at approximately 1 eV and therefore requires study. The trap species 

responsible for this peak can also be inferred by its lack of annealing at 373 K for 168 hours. For 

the JANUS mission, it has shown that a thermal anneal will not significantly suppress radiation-

induced dark current in the detectors. This means the mission will not need to make use of an 

anneal cycle which is currently used for radiation-induced damage removal in other space-borne 

image sensors such as the CCDs used in the Hubble Space Telescope Wide Field Camera [17]. 
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