20 research outputs found

    Drift Motion of Charged Particles in Inhomogeneous Magnetic and Strong Electric Fields

    No full text
    Abstract: Distinctive features of the drift motion of a nonrelativistic charged particle in slowly varying magnetic and strong electric fields, for which the assumption that the electric drift velocity is small as compared to the total particle velocity is non-applicable, are studied. The variational principles of the drift motion are extended to the case of the strong electric field. The generalized Littlejohn’s Lagrangian is obtained and the extended set of drift equations is derived. The possibility of particle acceleration due to the drift motion along the strong electric field is demonstrated. © 2020, Pleiades Publishing, Ltd

    Large-scale azimuthal structures in Hall-type plasma discharges

    No full text
    An explanation of large-scale low-frequency oscillations observed by means of a high-speed camera in different Hall-type plasma devices (magnetrons, Penning discharges, Hall thrusters, etc.) is proposed. They can be interpreted as the beating between high-frequency eigenmodes of gradient drift instability occurring in spatially bounded nonuniform plasmas. The resemblance of the experimental data obtained with the finite exposure time and the calculated characteristics of high-frequency modes beating is highlighted. The main results are obtained analytically in a magnetron-like configuration with the axial magnetic field and the radial electric field. © 2019 Author(s)

    Discharge Oscillations in Morozov’s Stationary Plasma Thruster as a Manifestation of Large-Scale Modes of Gradient Drift Instability

    No full text
    Abstract: The phenomenon of large-scale discharge oscillations in Morozov’s stationary plasma thruster (SPT) is physically interpreted by analyzing global modes of gradient drift instability. The problem is solved using an ideal two-fluid hydrodynamic plasma model that includes the effects of stationary electron flow, electron inertia, and spatial inhomogeneities of the magnetic field and plasma density along the accelerating channel. The frequencies and axial structure of unstable eigenmodes are calculated for typical parameters of the SPT-100 thruster. The obtained spectrum is characterized by a finite set of long-wavelength azimuthal modes in the lower hybrid frequency range, which are predominantly localized in the near-anode region of the thruster. It is shown that the eigenmodes can form wave packets the main characteristics of which in the linear stage of instability coincide with the parameters of the experimentally observed large-scale azimuthal spoke-like structures. The influence of the thruster geometry (the length and width of the accelerating channel) on the frequency characteristics of oscillations and formation of beatings is investigated. © 2019, Pleiades Publishing, Ltd

    Global structure of stationary zonal flow in rotating tokamak plasmas

    No full text
    [No abstract available

    Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    No full text
    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable. © 2018 Author(s)

    Marginal stability, characteristic frequencies, and growth rates of gradient drift modes in partially magnetized plasmas with finite electron temperature

    No full text
    The detailed analysis of stability of azimuthal oscillations in partially magnetized plasmas with crossed electric and magnetic fields is presented. The instabilities are driven by the transverse electron current which, in general, is due to a combination of E×B and electron diamagnetic drifts. Marginal stability boundary is determined for a wide range of the equilibrium plasma parameters. It is shown that in some regimes near the instability threshold, only the low-frequency long-wavelength oscillations are unstable, while the short-wavelength high-frequency modes are stabilized by the finite Larmor radius effects. Without such stabilization, the high-frequency modes have much larger growth rates and dominate. A new regime of the instability driven exclusively by the magnetic field gradient is identified. Such instability takes place in the region of the weak electric field and for relatively large gradients of plasma density (ρs/ln>1, where ρs is the ion-sound Larmor radius and ln is the scale length of plasma density inhomogeneity). © 2018 Author(s)

    Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    No full text
    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable. © 2018 Author(s)

    Marginal stability, characteristic frequencies, and growth rates of gradient drift modes in partially magnetized plasmas with finite electron temperature

    No full text
    The detailed analysis of stability of azimuthal oscillations in partially magnetized plasmas with crossed electric and magnetic fields is presented. The instabilities are driven by the transverse electron current which, in general, is due to a combination of E×B and electron diamagnetic drifts. Marginal stability boundary is determined for a wide range of the equilibrium plasma parameters. It is shown that in some regimes near the instability threshold, only the low-frequency long-wavelength oscillations are unstable, while the short-wavelength high-frequency modes are stabilized by the finite Larmor radius effects. Without such stabilization, the high-frequency modes have much larger growth rates and dominate. A new regime of the instability driven exclusively by the magnetic field gradient is identified. Such instability takes place in the region of the weak electric field and for relatively large gradients of plasma density (ρs/ln>1, where ρs is the ion-sound Larmor radius and ln is the scale length of plasma density inhomogeneity). © 2018 Author(s)
    corecore