73 research outputs found

    First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    Full text link
    We overview nonequilibrium Green function combined with density functional theory (NEGF-DFT) modeling of independent electron and phonon transport in nanojunctions with applications focused on a new class of thermoelectric devices where a single molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from ZGNRs, so that their overlap within the molecular region generates a peak in the electronic transmission. Additionally, the spatial symmetry properties of the transverse propagating states in the ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below liquid nitrogen temperature. The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short conjugated organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special issue of the Journal of Computational Electronics on "Simulation of Thermal, Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I. Knezevic and Z. Aksamij

    The dissent over dissent over descent

    Get PDF
    I am grateful to my four critics who together attack nearly everything that is attackable in my Dissent over Descent, thereby retaining the original spiritedness of their live presentations at Lund University, Campus Helsingborg, in June 2009.i Their responses have forced me to delve into some matters more deeply and draw connections that may not have been so obvious from the book. Several of the criticisms overlap, and they are addressed in the main body of this text, often without mentioning the critics’ names. However, criticisms unique to particular individuals are addressed in the notes, which are sometimes quite lengthy. Considering the highly charged nature of the topic and approach of Dissent over Descent, a special thanks goes the critics’ civility. Even my most hostile opponent, Birgitta Forsman, manages to pay me an unwitting compliment by drawing attention to my alleged ‘story-telling’ ways, which of course is normally the sense in which Darwin’s own scientific modus operandi was supposed to have broken decisively with Newton’s (Mayr 1991)

    Rational behaviour and strategy construction in infinite multiplayer games

    No full text
    We study infinite games played by arbitrarily many players on a directed graph. Equilibrium states capture rational behaviour in these games. Instead of the well-known notion of a Nash equilibrium, we focus on the notion of a subgame perfect equilibrium. We argue that the latter one is more appropriate for the kind of games we study, and we show the existence of a subgame perfect equilibrium in any infinite game with ω-regular winning conditions. As, in general, equilibria are not unique, it is appealing to compute one with a maximal payoff. This problem corresponds naturally to the problem of deciding given a game and two payoff vectors whether the game has an equilibrium with a payoff in between the given thresholds. We show that this problem is decidable for games with ω-regular winning conditions played on a finite graph and analyse its complexity. Moreover, we establish that any subgame perfect equilibrium of a game with ω-regular winning conditions played on a finite graph can be implemented by finite-state strategies. Finally, we consider logical definability. We state that if we fix the number of players together with an ω-regular winning condition for each of them and two payoff vectors the property that a game has a subgame perfect equilibrium with a payoff in between the given thresholds is definable in the modal µ-calculus

    Evolution of the diatoms: insights from fossil, biological and molecular data

    Get PDF
    Molecular sequence analyses have yielded many important insights into diatom evolution, but there have been few attempts to relate these to the extensive fossil record of diatoms, probably because of unfamiliarity with the data available, which are scattered widely through the geological literature. We review the main features of molecular phylogenies and concentrate on the correspondence between these and the fossil record; we also review the evolution of major morphological, cytological and life cycle characteristics, and possible diatom origins. The first physical remains of diatoms are from the Jurassic, and well-preserved, diverse floras are available from the Lower Cretaceous. Though these are unequivocally identifiable as centric diatoms, none except a possible Stephanopyxis can be unequivocally linked to lineages of extant diatoms, although it is almost certain that members of the Coscinodiscophyceae (radial centrics) and Mediophyceae (polar centrics) were present; some display curious morphological features that hint at an unorthodox cell division mechanism and life cycle. It seems most likely that the earliest diatoms were marine, but recently discovered fossil deposits hint that episodes of terrestrial colonization may have occurred in the Mesozoic, though the main invasion of freshwaters appears to have been delayed until the Cenozoic. By the Upper Cretaceous, many lineages are present that can be convincingly related to extant diatom taxa. Pennate diatoms appear in the late Cretaceous and raphid diatoms in the Palaeocene, though molecular phylogenies imply that raphid diatoms did in fact evolve considerably earlier. Recent evidence shows that diatoms are substantially underclassified at the species level, with many semicryptic or cryptic species to be recognized; however, there is little prospect of being able to discriminate between such taxa in fossil material
    • …
    corecore