34 research outputs found

    Electronic Structure of Disclinated Graphene in an Uniform Magnetic Field

    Full text link
    The electronic structure in the vicinity of the 1-heptagonal and 1-pentagonal defects in the carbon graphene plane is investigated. Using a continuum gauge field-theory model the local density of states around the Fermi energy is calculated for both cases. In this model, the disclination is represented by an SO(2) gauge vortex and corresponding metric follows from the elasticity properties of the graphene membrane. To enhance the interval of energies, a self-consistent perturbation scheme is used. The Landau states are investigated and compared with the predicted values.Comment: keywords: graphene, heptagonal defect, elasticity, carbon nanohorns, 13 page

    Effective action for strongly correlated electron systems

    Full text link
    The su(2|1) coherent-state path-integral representation of the partition function of the t - J model of strongly correlated electrons is derived at finite doping. The emergent effective action is compared to the one proposed earlier on phenomenological grounds by Shankar to describe holes in an antiferromagnet (Nucl.Phys. B330 (1990) 433). The t - J model effective action is found to have an important "extra" factor with no analogue in Shankar's action. It represents the local constraint of no double electron occupancy and reflects the rearrangement of the underlying phase-space manifold due to the presence of strong electron correlation. This important ingredient is shown to be essential to describe the physics of strongly correlated electron systems. Keywords: t - J model of strongly correlated electrons; su(2|1) coherent-state path integralComment: 22 page

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page
    corecore