42 research outputs found
Long-term growth in vitro of isolated, fully differentiated neurones from the central nervous system of an adult insect
A method is described for the isolation and growth in vitro of fully differentiated neurones from the thoracic ganglia of adult cockroaches. The presence of insect blood in the culture system is shown to promote growth. The morphology of the growing neurones and the plasticity of the branching processes are described and growth rates are measured. Using a fluorescent Ca2+ indicator dye, changes of intracellular calcium levels in the growing neurones in response to K+ depolarization have been measured. The results, indicating the presence of voltage-dependent Ca2+ channels on neuronal processes in vitro, show that neurones can be maintained in a functional state for several weeks by this technique. Such preparations could prove useful for studying a variety of physiological and pharmacological properties of neurones, including the mechanisms controlling growth, synapse formation and neuronal interactions with other cell types. <br/
Kinetic Turbulence
The weak collisionality typical of turbulence in many diffuse astrophysical
plasmas invalidates an MHD description of the turbulent dynamics, motivating
the development of a more comprehensive theory of kinetic turbulence. In
particular, a kinetic approach is essential for the investigation of the
physical mechanisms responsible for the dissipation of astrophysical turbulence
and the resulting heating of the plasma. This chapter reviews the limitations
of MHD turbulence theory and explains how kinetic considerations may be
incorporated to obtain a kinetic theory for astrophysical plasma turbulence.
Key questions about the nature of kinetic turbulence that drive current
research efforts are identified. A comprehensive model of the kinetic turbulent
cascade is presented, with a detailed discussion of each component of the model
and a review of supporting and conflicting theoretical, numerical, and
observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al.
(eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science
Library 407, Springer-Verlag Berlin Heidelberg (2015
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions
Glial toxin effect on protein synthesis in an insect connective
Analysis of electron autoradiographs from the nerve cord of the insect, Periplaneta americana (L.) shows a significant incorporation of 3H-labelled protein in the axons. The axonal activity is greatly reduced after treatment of the cord with the glial toxin ethidium bromide. This is interpreted as substantiating the possibility that adaxonal glia can transfer proteins to the axons
Regenerating adult cockroach dorsal unpaired median neurones in vitro retain their in vivo membrane characteristics
The ability of differentiated neurones to recover from disease or injury depends upon both intrinsic and extrinsic factors. Whereas most mammalian neurones have a limited capacity for regeneration, regulated, in part, by physical and chemical cues in the brain microenvironment (Bray et al. 1987; Caroni and Schwab, 1988, 1989), invertebrates, and in particular insects, exhibit a far greater capacity for repair of central neurones and circuits (Treherne et al. 1988). Studies of the cues that regulate the regenerative process are made easier by the use of individual, identified neurones, cultured under controlled conditions. Invertebrates are particularly useful in this regard; neurones from mature nervous systems of both annelids and molluscs have been grown successfully in culture and their growth can be influenced by changes in the culture conditions (Acklin and Nicholls, 1990; Dagan and Levitan, 1981; Ready and Nicholls, 1979; Syed et al. 1990). Routine and long-term culture of identified neurones from the insect central nervous system (CNS) has proved more elusive, preventing the use of neurones from these well-studied systems. Recently, however, cultures of cockroach (Howes et al. 1991), locust (Kirchoff and Bicker, 1992) and moth (Hayashi and Levine, 1992) adult neurones have been described. <br/
Cell proliferation in the repairing adult insect central nervous system: incorporation of the thymidine analogue 5-bromo-2-deoxyuridine in vivo
Uptake of the thymidine analogue 5-bromo-2-deoxyuridine into non-neuronal cells of the insect central nervous system has been examined following a controlled lesioning of the glial elements. The pattern of BUdR labelling along the penultimate abdominal connective was examined over a period of 17 days. Cell proliferation occurred in and immediately around the site of damage in both perineurial and subperineurial glial cells but at different times post-lesion for the two regions. Proliferation in the perineurial zone was maximal at 6-8 days post-lesion but continued for at least 17 days. Subperineurial proliferation was less dramatic and peaked between days 8-11 post-lesion. In both areas division appears to be confined to the reactive glial cells. These results are discussed in the context of past research on this system, particularly with regard to the restoration of the blood-brain barrier
Mechanisms of glial regeneration in an insect central nervous system
As in other repairing systems, glial regeneration in insect central nervous connectives, following selective chemical lesioning, involves both exogenous and endogenous elements. Our current evidence, including that obtained with monoclonal antibodies, indicates that the reactive, granule-containing cells are derived from a sub-population of circulating haemocytes which, within 24 h, invade, and are restricted to, the lesion zone. The granule-containing cells are involved in the initial repair of the perineurial region. They also contribute to the first stage in the restoration of the blood-brain barrier and are responsible for recruiting reactive endogenous glia, apparently from the vicinity of the anterior abdominal ganglion. The granule-containing cells transform into or are replaced by functional glia between 3 and 5 days after selective glial disruption, coincident with the appearance in the lesion zone of dividing reactive cells