12 research outputs found

    Chemical polishing of aluminium

    Get PDF

    Peak Stir Zone Temperatures during Friction Stir Processing

    Get PDF
    The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 ⁰Cto 1015 ⁰C (0.90 to 0.97 TMelt) and were not affected by preheating to 400⁰C, although the dwell time above 900 ⁰C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement

    Feasibility study of low force robotic friction stir process and its effect on cavitation erosion and electrochemical corrosion for Ni Al bronze alloys

    Get PDF
    Robotic friction stir processing (FSP) has not been widely researched to date. This is perhaps due to the limited force capabilities of industrial robots in comparison with dedicated commercial FSP equipment. When operating a FSP machine, the force used to plunge the tools may range from 5000 to 8000 N which is currently beyond the capability of most robots. However, the capacity of robotic manipulators is increasing, so low force friction stir processing is becoming feasible. The ability of the robot arm to apply a controlled force that is normal to a 3-dimensional surface without the need to reorient the workpiece makes it a very useful tool for FSP of complex components. In this analysis, a robot arm with a capacity of 2500 N is used to improve the surface properties of nickel aluminum bronze (NAB) using low force FSP. Multiple passes were applied to the surface of the test sample for a more consistent spread of the stir zone. The sample was then microhardness tested and demonstrated a 62 pct increase in surface hardness. Cavitation erosion testing of the original and processed surfaces was also performed as per ASTM G-32. The erosion rate of the processed NAB sample was 44 pct of the rate experienced by the original cast NAB sample. Finally, the corrosion potentials of FSP NAB were measured at 45 mV less anodic than the unprocessed material, indicating that the processed material is more noble relative to the cast NAB sample

    Strengthening Mechanisms in NiAl Bronze: Hot Deformation by Rolling and Friction-Stir Processing

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1007/s11661-012-1181-xMicrostructures produced by isothermal hot rolling of a NiAl bronze material were evaluated by quantitative microscopy methods and parameters describing the contributions of precipitate dispersions, grain size, solute content, and dislocation density to the yield strengths of the individual constituents of microstructure were determined. Models for the strengths of the individual constituents were combined to predict the temperature dependence of the yield strength as a function of hot rolling temperature, and the prediction was found to be in good agreement with measured yield strengths. The models were applied to microstructures in a stir zone produced by multipass friction-stir processing (FSP) and, again, found to predict measured yield strengths with high accuracy. Such models may aid in assessing the role of microstructure gradients produced during FSP and other processes.Office of Naval Research (ONR)National Research Council (NRC)N0001407WR20053 (ONR
    corecore