1,671 research outputs found

    Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments

    Get PDF
    n this paper, we present a radiotelemetry sensor, designed as a lab-in-a-pill, which incorporates a two-channel microfabricated sensor platform for real-time measurements of temperature and pH. These two parameters have potential application for use in remote biological sensing (for example they may be used as markers that reflect the physiological environment or as indicators for disease, within the gastrointestinal tract). We have investigated the effects of biofouling on these sensors, by exploring their response time and sensitivity in a model in vitro gastrointestinal system. The artificial gastric and intestinal solutions used represent a model both for fasting, as well as for the ingestion of food and subsequent digestion to gastrointestinal chyme. The results showed a decrease in pH sensitivity after exposure of the sensors for 3 h. The response time also increased from an initial measurement time of 10 s in pure GI juice, to ca. 25 s following the ingestion of food and 80 s in simulated chyme. These in vitro results indicate that changes in viscosity in our model gastrointestinal system had a pronounced effect on the unmodified sensor

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power

    Schwinger-Dyson approach to non-equilibrium classical field theory

    Get PDF
    In this paper we discuss a Schwinger-Dyson [SD] approach for determining the time evolution of the unequal time correlation functions of a non-equilibrium classical field theory, where the classical system is described by an initial density matrix at time t=0t=0. We focus on λϕ4\lambda \phi^4 field theory in 1+1 space time dimensions where we can perform exact numerical simulations by sampling an ensemble of initial conditions specified by the initial density matrix. We discuss two approaches. The first, the bare vertex approximation [BVA], is based on ignoring vertex corrections to the SD equations in the auxiliary field formalism relevant for 1/N expansions. The second approximation is a related approximation made to the SD equations of the original formulation in terms of ϕ\phi alone. We compare these SD approximations as well as a Hartree approximation with exact numerical simulations. We find that both approximations based on the SD equations yield good agreement with exact numerical simulations and cure the late time oscillation problem of the Hartree approximation. We also discuss the relationship between the quantum and classical SD equations.Comment: 36 pages, 5 figure

    Shear Viscosity in the O(N) Model

    Full text link
    We compute the shear viscosity in the O(N) model at first nontrivial order in the large N expansion. The calculation is organized using the 1/N expansion of the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which leads to an integral equation summing ladder and bubble diagrams. We also consider the weakly coupled theory for arbitrary N, using the three-loop expansion of the 2PI effective action. In the limit of weak coupling and vanishing mass, we find an approximate analytical solution of the integral equation. For general coupling and mass, the integral equation is solved numerically using a variational approach. The shear viscosity turns out to be close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE

    Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits

    Full text link
    We have updated predictions for high energy neutrino and antineutrino charged current cross-sections within the conventional DGLAP formalism of NLO QCD using a modern PDF fit to HERA data, which also accounts in a systematic way for PDF uncertainties deriving from both model uncertainties and from the experimental uncertainties of the input data sets. Furthermore the PDFs are determined using an improved treatment of heavy quark thresholds. A measurement of the neutrino cross-section much below these predictions would signal the need for extension of the conventional formalism as in BFKL resummation, or even gluon recombination effects as in the colour glass condensate model.Comment: 10 pages (RevTeX4), 6 figures; expanded discussion of additional theoretical uncertainties at low x; accepted for publication in JHE

    Strong interactions in air showers

    Full text link
    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.Comment: 35 pages, 12 figures. Accepted for publication in JCA

    de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2

    Full text link
    Understanding the superconducting properties of MgB_2 is based strongly on knowledge of its electronic structure. In this paper we review experimental measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using the de Haas-van Alphen (dHvA) effect. In general, the measurements are in excellent agreement with the theoretical predictions of the electronic structure, including the strength of the electron-phonon coupling on each Fermi surface sheet. For the Al doped samples, we are able to measure how the band structure changes with doping and again these are in excellent agreement with calculations based on the virtual crystal approximation. We also review work on the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in MgB2: Physics and Applications" (10 Pages with figures

    Racial differences in blood pressure response to calcium channel blocker monotherapy: A meta-analysis

    Get PDF
    Background A systematic literature review was conducted to determine whether US blacks and whites have differential blood pressure (BP) response to calcium channel blocker (CCB) monotherapy.MethodsSix published studies made up the final cohort of eligible articles. Multiple treatment groups within some studies led to a total of eight sets of estimates for BP reduction with a total of 6,851 white or nonblack participants and 3,371 black participants.ResultsThe pooled difference in systolic blood pressure (SBP) change between blacks and whites was 2.7 mm Hg (95% confidence interval (CI): 4.0, 1.3) with blacks having greater response. The difference in diastolic blood pressure (DBP) between blacks and whites was 0.4 mm Hg (95% CI: 1.0, 0.3) with blacks having greater response. Using a dichotomous outcome measure, whites were found to be just as likely as blacks to attain the DBP goal of 90 mm Hg or a 10 mm Hg or greater change (relative risk: 1.00 95% CI: 0.91, 1.11). In addition, examination of the continuous distribution of BP responses of whites and blacks showed over 90% overlap in treatment response.ConclusionAssessment of differential response to CCB monotherapy by race in published data depends on choice of outcome metric. Nonetheless, the results of this systematic review indicate that BP response is qualitatively similar in US blacks and whites, suggesting that patient race is not likely to offer any clinical utility for decisions about the likely effect of this antihypertensive therapy

    Oxygen impurities in NiAl: Relaxation effects

    Get PDF
    We have used a full-potential linear muffin-tin orbital method to calculate the effects of oxygen impurities on the electronic structure of NiAl. Using the supercell method with a 16-atom supercell we have investigated the cases where an oxygen atom is substitutionally placed at either a nickel or an aluminum site. Full relaxation of the atoms within the supercell was allowed. We found that oxygen prefers to occupy a nickel site over an aluminum site with a site selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum site is found to cause a substantial relaxation of its nickel neighbors away from it. In contrast, this steric repulsion is hardly present when the oxygen atom occupies the nickel site and is surrounded by aluminum neighbors. We comment on the possible relation of this effect to the pesting degradation phenomenon (essentially spontaneous disintegration in air) in nickel aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001
    corecore