34,630 research outputs found

    Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models

    Full text link
    We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, βλ2,λ3\beta\propto-\lambda^2, -\lambda^3 and βλ\beta\propto-\lambda, where λ\lambda is the 't Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of quantum corrections are added. (accepted by Phys. Rev. D

    Features of pulsed synchronization of a systems with a tree-dimensional phase space

    Full text link
    Features of synchronization picture in the system with the limit cycle embedded in a three-dimensional phase space are considered. By the example of Ressler system and Dmitriev - Kislov generator under the action of a periodic sequence of delta - function it is shown, that synchronization picture significantly depends on the direction of pulse action. Features of synchronization tons appeared in these models are observed.Comment: 16 pages, 11 figure

    Internal stress wave measurements in solids subjected to lithotripter pulses

    Get PDF
    Semiconductor strain gauges were used to measure the internal strain along the axes of spherical and disk plaster specimens when subjected to lithotripter shock pulses. The pulses were produced by one of two lithotripters. The first source generates spherically diverging shock waves of peak pressure approximately 1 MPa at the surface of the specimen. For this source, the incident and first reflected pressure (P) waves in both sphere and disk specimens were identified. In addition, waves reflected by the disk circumference were found to contribute significantly to the strain fields along the disk axis. Experimental results compared favorably to a ray theory analysis of a spherically diverging shock wave striking either concretion. For the sphere, pressure contours for the incident P wave and caustic lines were determined theoretically for an incident spherical shock wave. These caustic lines indicate the location of the highest stresses within the sphere and therefore the areas where damage may occur. Results were also presented for a second source that uses an ellipsoidal reflector to generate a 30-MPa focused shock wave, more closely approximating the wave fields of a clinical extracorporeal lithotripter

    Canonical Charmonium Interpretation for Y(4360) and Y(4660)

    Full text link
    In this work, we consider the canonical charmonium assignments for Y(4360) and Y(4660). Y(4660) is good candidate of 53S1\rm 5 ^3S_1 ccˉc\bar{c} state, the possibility of Y(4360) as a 33D1\rm 3 ^3D_1 ccˉc\bar{c} state is studied, and the charmonium hybrid interpretation of Y(4360) can not be excluded completely. We evaluate the e+ee^{+}e^{-} leptonic widths, E1 transitions, M1 transitions and the open flavor strong decays of Y(4360) and Y(4660). Experimental tests for the charmonium assignments are suggested.Comment: 32 pages, 4 figure

    A Note on Chiral Symmetry Breaking from Intersecting Branes

    Full text link
    In this paper, we will consider the chiral symmetry breaking in the holographic model constructed from the intersecting brane configuration, and investigate the Nambu-Goldstone bosons associated with this symmetry breaking.Comment: 16 pp, minor changes, to appear PR

    Localized magnetic states in biased bilayer and trilayer graphene

    Full text link
    We study the localized magnetic states of impurity in biased bilayer and trilayer graphene. It is found that the magnetic boundary for bilayer and trilayer graphene presents the mixing features of Dirac and conventional fermion. For zero gate bias, as the impurity energy approaches the Dirac point, the impurity magnetization region diminishes for bilayer and trilayer graphene. When a gate bias is applied, the dependence of impurity magnetic states on the impurity energy exhibits a different behavior for bilayer and trilayer graphene due to the opening of a gap between the valence and the conduction band in the bilayer graphene with the gate bias applied. The magnetic moment and the corresponding magnetic transition of the impurity in bilayer graphene are also investigated.Comment: 16 pages,6 figure

    Epistemic Logic with Partial Dependency Operator

    Full text link
    In this paper, we introduce partial\textit{partial} dependency modality D\mathcal{D} into epistemic logic so as to reason about partial\textit{partial} dependency relationship in Kripke models. The resulted dependence epistemic logic possesses decent expressivity and beautiful properties. Several interesting examples are provided, which highlight this logic's practical usage. The logic's bisimulation is then discussed, and we give a sound and strongly complete axiomatization for a sub-language of the logic

    Joint optimal relay location and power allocation for ultra-wideband-based wireless body area networks

    Full text link
    © 2015, Ding et al.; licensee Springer. In this paper, we study the joint optimal relay location and power allocation problem for single-relay-assisted ultra-wideband (UWB)-based wireless body area networks (WBANs). Specifically, to optimize spectral efficiency (SE) for single-relay cooperative communication in UWB-based WBANs, we seek the relay with the optimal location together with the corresponding optimal power allocation. With proposed relay-location-based network models, the SE maximization problems are mathematically formulated by considering three practical scenarios, namely, along-torso scenario, around-torso scenario, and in-body scenario. Taking into account realistic power considerations for each scenario, the optimal relay location and power allocation are jointly derived and analyzed. Numerical results show the necessity of utilization of relay node for the spectral and energy-efficient transmission in UWB-based WBANs and demonstrate the effectiveness of the proposed scheme in particular for the around-torso and in-body scenarios. With the joint optimal relay location and power allocation, the proposed scheme is able to prolong the network lifetime and extend the transmission range in WBANs significantly compared to direct transmission

    Optimal spectral efficiency for cooperative UWB based on-body area networks

    Full text link
    © 2014 IEEE. In this paper, spectral efficiency (SE) is investigated for cooperative ultra-wideband (UWB) based on-body area networks (OBANs). To optimize SE for single-relay cooperation, an equivalent generic cooperative model in UWB based OBANs is established first. With the proposed model, joint optimal relay location and power allocation for cooperation is then derived to solve the SE maximization problem. Simulation results show that direct transmission is preferable for UWB based OBANs when the transmitter and receiver are located on the same side of the human body. However, the joint optimal cooperative transmission scheme can achieve a significant improvement on SE compared with direct transmission when the transmitter and receiver are located on the different sides of the human body, which indicates that cooperation is more feasible to be applied in this case due to its robustness to the significant path loss
    corecore