23,670 research outputs found
Theory of ultrathin films at metal-ceramic interfaces
A theoretical model for understanding the formation of interfacial thin films
is presented, which combines density functional theory calculations for
interface energies with thermodynamic modeling techniques for multicomponent
bulk systems. The theory is applied to thin film formation in VC-doped WC-Co
cemented carbides. It is predicted that ultrathin VC films may exist in WC/Co
interfaces at the high temperature sintering conditions where most of the WC
grain growth occurs, which provides an explanation of the grain growth
inhibiting effect of VC additions in the WC-Co system
Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system
We experimentally and theoretically study the frequency shift of a driven
cavity coupled to a superconducting charge qubit. In addition to previous
studies, we here also consider drive strengths large enough to energetically
allow for quasiparticle creation. Quasiparticle tunneling leads to the
inclusion of more than two charge states in the dynamics. To explain the
observed effects, we develop a master equation for the microwave dressed charge
states, including quasiparticle tunneling. A bimodal behavior of the frequency
shift as a function of gate voltage can be used for sensitive charge detection.
However, at weak drives the charge sensitivity is significantly reduced by
non-equilibrium quasiparticles, which induce transitions to a non-sensitive
state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a
very fast relaxation channel to the sensitive state. In this regime, the charge
sensitivity is thus robust against externally injected quasiparticles and the
desired dynamics prevail over a broad range of temperatures. We find very good
agreement between theory and experiment over a wide range of drive strengths
and temperatures.Comment: 25 pages, 7 figure
Structure and kinematics of the molecular spiral arms in M51
Mapping of the CO(1-0) emission from the spiral galaxy was made with the Onsala 20 m antenna. The observations show that the emission is considerably enhanced in spiral arms which appear to originate as intense ridges of emission about 1 kpc from the nucleus. One of the main objectives for the 1986 observations was to study the variations of the tangential velocity component of molecular gas across a spiral arm. The radial velocity was found to have a velocity shift similar to that predicted by the density wave theory. The present (1986) observations of the inner southern spiral arm of M51 show that the tangential velocity component also behaves in a way which conforms with the density wave model. The molecular arms were compared with the H alpha ionized gas arms of Tully (1974) and it was found that the ionized gas appears to have its maximum intensity slightly outside the molecular arm
Non-colliding Brownian Motions and the extended tacnode process
We consider non-colliding Brownian motions with two starting points and two
endpoints. The points are chosen so that the two groups of Brownian motions
just touch each other, a situation that is referred to as a tacnode. The
extended kernel for the determinantal point process at the tacnode point is
computed using new methods and given in a different form from that obtained for
a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the
extended kernel is also different from that obtained for the extended tacnode
kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the
correlation kernel for a finite number of non-colliding Brownian motions
starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded
and many typos correcte
Average characteristic polynomials in the two-matrix model
The two-matrix model is defined on pairs of Hermitian matrices of
size by the probability measure where
and are given potential functions and \tau\in\er. We study averages
of products and ratios of characteristic polynomials in the two-matrix model,
where both matrices and may appear in a combined way in both
numerator and denominator. We obtain determinantal expressions for such
averages. The determinants are constructed from several building blocks: the
biorthogonal polynomials and associated to the two-matrix
model; certain transformed functions and \Q_n(v); and finally
Cauchy-type transforms of the four Eynard-Mehta kernels , ,
and . In this way we generalize known results for the
-matrix model. Our results also imply a new proof of the Eynard-Mehta
theorem for correlation functions in the two-matrix model, and they lead to a
generating function for averages of products of traces.Comment: 28 pages, references adde
Dynamic parity recovery in a strongly driven Cooper-pair box
We study a superconducting charge qubit coupled to an intensive
electromagnetic field and probe changes in the resonance frequency of the
formed dressed states. At large driving strengths, exceeding the qubit
energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg
(LZS) interference structure of a longitudinally driven two-level system. For
even stronger drives we observe a significant change in the LZS pattern and
contrast. We attribute this to photon-assisted quasiparticle tunneling in the
qubit. This results in the recovery of the qubit parity, eliminating effects of
quasiparticle poisoning and leads to an enhanced interferometric response. The
interference pattern becomes robust to quasiparticle poisoning and has a good
potential for accurate charge sensing.Comment: 5 pages, 4 figure
Observation of Buried Phosphorus Dopants near Clean Si(100)-(2x1) with Scanning Tunneling Microscopy
We have used scanning tunneling microscopy to identify individual phosphorus
dopant atoms near the clean silicon (100)-(2x1) reconstructed surface. The
charge-induced band bending signature associated with the dopants shows up as
an enhancement in both filled and empty states and is consistent with the
appearance of n-type dopants on compound semiconductor surfaces and passivated
Si(100)-(2x1). We observe dopants at different depths and see a strong
dependence of the signature on the magnitude of the sample voltage. Our results
suggest that, on this clean surface, the antibonding surface state band acts as
an extension of the bulk conduction band into the gap. The positively charged
dimer vacancies that have been observed previously appear as depressions in the
filled states, as opposed to enhancements, because they disrupt these surface
bands.Comment: 4 pages, 3 figures. TeX for OSX from Wierde
High-resolution spatiotemporal weather models for climate studies
<p>Abstract</p> <p>Background</p> <p>Climate may exert a strong influence on health, in particular on vector-borne infectious diseases whose vectors are intrinsically dependent on their environment. Although critical, linking climate variability to health outcomes is a difficult task. For some diseases in some areas, spatially and temporally explicit surveillance data are available, but comparable climate data usually are not. We utilize spatial models and limited weather observations in Puerto Rico to predict weather throughout the island on a scale compatible with the local dengue surveillance system.</p> <p>Results</p> <p>We predicted monthly mean maximum temperature, mean minimum temperature, and cumulative precipitation at a resolution of 1,000 meters. Average root mean squared error in cross-validation was 1.24°C for maximum temperature, 1.69°C for minimum temperature, and 62.2 millimeters for precipitation.</p> <p>Conclusion</p> <p>We present a methodology for efficient extrapolation of minimal weather observation data to a more meaningful geographical scale. This analysis will feed downstream studies of climatic effects on dengue transmission in Puerto Rico. Additionally, we utilize conditional simulation so that model error may be robustly passed to future analyses.</p
Survival of Clostridium perfringens During Simulated Transport and Stability of Some Plasmid-borne Toxin Genes under Aerobic Conditions
Clostridium perfringens is a pathogen of great concern in veterinary medicine, because it causes enteric diseases and different types of toxaemias in domesticated animals. It is important that bacteria in tissue samples, which have been collected in the field, survive and for the classification of C. perfringens into the correct toxin group, it is crucial that plasmid-borne genes are not lost during transportation or in the diagnostic laboratory. The objectives of this study were to investigate the survival of C. perfringens in a simulated transport of field samples and to determine the stability of the plasmid-borne toxin genes cpb1 and etx after storage at room temperature and at 4°C. Stability of the plasmid-borne genes cpb1 and etx of C. perfringens CCUG 2035, and cpb2 from C. perfringens CIP 106526, JF 2255 and 6 field isolates in aerobic atmosphere was also studied. Survival of C. perfringens was similar in all experiments. The cpb1 and etx genes were detected in all isolates from samples stored either at room temperature or at 4°C for 24â44 h. Repeated aerobic treatment of C. perfringens CCUG 2035 and CIP 106526 did not result in the loss of the plasmid-borne genes cpb1, cpb2 or etx. Plasmid-borne genes in C. perfringens were found to be more stable than generally reported. Therefore, C. perfringens toxinotyping by PCR can be performed reliably, as the risk of plasmid loss seems to be a minor problem
- âŠ