19 research outputs found

    Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression.</p> <p>Results</p> <p>Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction <it>in vitro</it>. Analysis of the effect of NF90ctv-TAR RNA interaction <it>in vivo </it>showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene.</p> <p>Conclusion</p> <p>Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.</p

    Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome

    Get PDF
    Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes

    The epigenetic route of temozolomide action in brain tumor cells

    No full text

    Peptides related to archeal tRNAs

    No full text

    Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development

    No full text
    We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a “buffering” mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleu
    corecore