85 research outputs found

    Hadron masses in QCD with one quark flavour

    Full text link
    One-flavour QCD - a gauge theory with SU(3) colour gauge group and a fermion in the fundamental representation - is studied by Monte Carlo simulations. The mass spectrum of hadronic bound states is investigated in a volume with extensions of L ~ 4.4r_0 (~2.2fm) at two different lattice spacings: a ~ 0.37r_0 (~0.19fm) and a ~ 0.27r_0 (~0.13fm). The lattice action is Symanzik tree-level-improved Wilson action for the gauge field and (unimproved) Wilson action for the fermion.Comment: 21 pages, 4 figures; further references adde

    The Kondo Resonance in Electron Spectroscopy

    Full text link
    The Kondo resonance is the spectral manifestation of the Kondo properties of the impurity Anderson model, and also plays a central role in the dynamical mean-field theory (DMFT) for correlated electron lattice systems. This article presents an overview of electron spectroscopy studies of the resonance for the 4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including beginning efforts at using angle resolved photoemission to determine the k-dependence of the resonance. The overview includes the comparison and analysis of spectroscopy data with theoretical spectra as calculated for the impurity model and as obtained by DMFT, and the Kondo volume collapse calculation of the cerium alpha-gamma phase transition boundary, with its spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J. Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d \to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure

    Dynamical Mean-Field Theory and Its Applications to Real Materials

    Full text link
    Dynamical mean-field theory (DMFT) is a non-perturbative technique for the investigation of correlated electron systems. Its combination with the local density approximation (LDA) has recently led to a material-specific computational scheme for the ab initio investigation of correlated electron materials. The set-up of this approach and its application to materials such as (Sr,Ca)VO_3, V_2O_3, and Cerium is discussed. The calculated spectra are compared with the spectroscopically measured electronic excitation spectra. The surprising similarity between the spectra of the single-impurity Anderson model and of correlated bulk materials is also addressed.Comment: 20 pages, 9 figures, invited paper for the JPSJ Special Issue "Kondo Effect - 40 Years after the Discovery"; final version, references adde

    The spectral and magnetic properties of α\alpha- and γ\gamma-Ce from the Dynamical Mean-Field Theory and Local Density Approximation

    Full text link
    We have calculated ground state properties and excitation spectra for Ce metal with the {\it ab initio} computational scheme combining local density approximation and dynamical mean-field theory (LDA+DMFT). We considered all electronic states, i.e. correlated f-states and non-correlated s-, p- and d-states. The strong local correlations (Coulomb interaction) among the f-states lead to typical many-body resonances in the partial f-density, such as lower and upper Hubbard band. Additionally the well known Kondo resonance is observed. The s-, p- and d-densities show small to mediate renormalization effects due to hybridization. We observe different Kondo temperatures for α\alpha- and γ\gamma-Ce (TK,α1000KT_{K,\alpha}\approx 1000 K and TK,γ30KT_{K,\gamma}\approx 30 K), due to strong volume dependence of the effective hybridization strength for the localized f-electrons. Finally we compare our results with a variety of experimental data, i.e. from photoemission spectroscopy (PES), inverse photoemission spectroscopy (BIS), resonant inverse photoemission spectroscopy (RIPES) and magnetic susceptibility measurements.Comment: 7 pages, 4 figure

    Trends in Environmental Analysis

    Full text link
    corecore