1,682 research outputs found

    First Principles Study of CaFe2As2 "Collapse" Under Pressure

    Full text link
    We perform first principles calculations on CaFe2As2 under hydrostatic pressure. Our total energy calculations show that though the striped antiferromagnetic (AFM) orthorhombic (OR) phase is favored at P=0, a non-magnetic collapsed tetragonal (cT) phase with diminished c-parameter is favored for P > 0.36 GPa, in agreement with experiments. Rather than a mechanical instability, this is an enthalpically driven transition from the higher volume OR phase to the lower volume cT phase. Calculations of electronic density of states reveal pseudogaps in both OR and cT phases, though As(p) hybridization with Fe(d) is more pronounced in the OR phase. We provide an estimate for the inter-planar magnetic coupling. Phonon entropy considerations provide an interpretation of the finite temperature phase boundaries of the cT phase.Comment: 4 pages, 4 figures, 1 Tabl

    Lower order terms in Szego type limit theorems on Zoll manifolds

    Full text link
    This is a detailed version of the paper math.FA/0212273. The main motivation for this work was to find an explicit formula for a "Szego-regularized" determinant of a zeroth order pseudodifferential operator (PsDO) on a Zoll manifold. The idea of the Szego-regularization was suggested by V. Guillemin and K. Okikiolu. They have computed the second term in a Szego type expansion on a Zoll manifold of an arbitrary dimension. In the present work we compute the third asymptotic term in any dimension. In the case of dimension 2, our formula gives the above mentioned expression for the Szego-redularized determinant of a zeroth order PsDO. The proof uses a new combinatorial identity, which generalizes a formula due to G.A.Hunt and F.J.Dyson. This identity is related to the distribution of the maximum of a random walk with i.i.d. steps on the real line. The proof of this combinatorial identity together with historical remarks and a discussion of probabilistic and algebraic connections has been published separately.Comment: 39 pages, full version, submitte

    The two-angle model and the phase diagram for Chromatin

    Full text link
    We have studied the phase diagram for chromatin within the framework of the two-angle model. Rather than improving existing models with finer details our main focus of the work is getting mathematically rigorous results on the structure, especially on the excluded volume effects and the effects on the energy due to the long-range forces and their screening. Thus we present a phase diagram for the allowed conformations and the Coulomb energies

    Liquid-liquid transition in supercooled silicon determined by first-principles simulation

    Full text link
    First principles molecular dynamics simulations reveal a liquid-liquid phase transition in supercooled elemental silicon. Two phases coexist below Tc1232KT_c\approx 1232K. The low density phase is nearly tetra-coordinated, with a pseudogap at the Fermi surface, while the high density phase is more highly coordinated and metallic in nature. The transition is observed through the formation of van der Waals loops in pressure-volume isotherms below TcT_c.Comment: 9 pages 4 figure

    Super-Radiance and the Unstable Photon Oscillator

    Full text link
    If the damping of a simple harmonic oscillator from a thermally random force is sufficiently strong, then the oscillator may become unstable. For a photon oscillator (radiatively damped by electric dipole moments), the instability leads to a low temperature Hepp-Lieb-Preparata super-radiant phase transition. The stable oscillator regime is described by the free energy of the conventional Casimir effect. The unstable (strongly damped) oscillator has a free energy corresponding to Dicke super-radiance.Comment: 6 pages ReVTeX 2 figures *.ep

    Entanglement and particle correlations of Fermi gases in harmonic traps

    Full text link
    We investigate quantum correlations in the ground state of noninteracting Fermi gases of N particles trapped by an external space-dependent harmonic potential, in any dimension. For this purpose, we compute one-particle correlations, particle fluctuations and bipartite entanglement entropies of extended space regions, and study their large-N scaling behaviors. The half-space von Neumann entanglement entropy is computed for any dimension, obtaining S_HS = c_l N^(d-1)/d ln N, analogously to homogenous systems, with c_l=1/6, 1/(6\sqrt{2}), 1/(6\sqrt{6}) in one, two and three dimensions respectively. We show that the asymptotic large-N relation S_A\approx \pi^2 V_A/3, between the von Neumann entanglement entropy S_A and particle variance V_A of an extended space region A, holds for any subsystem A and in any dimension, analogously to homogeneous noninteracting Fermi gases.Comment: 15 pages, 22 fig

    Real and virtual strange processes

    Get PDF
    Following notions of quantum mechanics as interpreted by the Copenhagen School, we make a distinction between measurements involving one or two virtual K mesons. New predictions result for the period of K oscillations at the Phi Factory
    corecore