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Abstract

Following notions of quantum mechanics as interpreted by the

Copenhagen School, we make a distinction between measurements in-

volving one or two virtual K mesons. New predictions result for the

period of K oscillations at the � factory.

1 Introduction

Our purpose is to discuss the insight that may be gained from � factory
experiments (�! Ko+ �Ko) concerning a central issue of quantum measure-
ments; i.e. What is virtual and what is real? Before discussing our concrete
predictions (i.e. numbers!) for the outcome of some � factory experiments,

we wish �rst to discuss qualitatively that not all aspects of quantum mea-
surements have simple agreed upon answers. Briey, we have a great deal of
sympathy with Einstein who lost the debate with Bohr. Known experiments
do �t into Bohr's scheme and mere \thought experiments" get boring after

a while. Einstein and Bohr did agree upon what the quantum mechanical

scheme entailed, but disagreed on whether this scheme was the complete
story [1, 2, 3].

A primary rule of the scheme is that all experimental data are classical.
Suppose that experimental data are stored on (say) a computer disk. Now
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imagine that the magnetic grains on the disk were in superposition (an am-

plitude for \0" and an amplitude for \1" on all of the little magnetic bits

in some big binary �le). If the computer sends to the standard output the

message \disk unreadable", then you know you have no data. Real data are

\classical" to a su�cient degree of accuracy. (A few coherent quantum bits

here or there might appear in an \error bar", but if you are really in quan-

tum superposition, you have no data.) We call data real. The primary rule

is that data are classical. The classical part of physics is essential to quan-

tum mechanics in the Bohr scheme. Superposition of amplitudes applies to

those parts of the physical system that you do not see. There is no data

on a quantum object interacting with the classical measurement apparatus.

If you have data, then it is from the classical part of the physical system.

What you do not see, i.e. the quantum part of the physical system, is what
we call virtual. The apparatus is real, and the quantum object is virtual.
According to the dictates of Bohr, a measurement is an interaction between
a classical apparatus and a quantum object. That was decided by Bohr,

Heisenberg, and other assorted friends of the Copenhagen School. That is
the conventional scheme of things. We have reviewed all this because over
the years many workers have distorted what others previously agreed con-
stituted the quantum mechanical analysis of measurements. For example,
we o�er a $100.00 reward to the �rst reader who �nds for us a manuscript
with Bohr as an author which includes the so-called \collapse of the wave

function" as a part of quantum mechanical theory.
Briey, in the canonical \electron moves through two slits thought exper-

iment" you get quantum interference when there are no data on which slit
the electron passed through. The electron path is then \virtual". If data
exist showing which slit the electron chooses, then electron is real and there

is no interference. The electron is real when you see it and virtual when you
do not see it.

Bohr found no problems. The outcome of an experiment depends on

how you set up the real (classical) apparatus, and PLEASE do not ask for
data from a virtual (quantum) object. JUST DO NOT ASK WHAT THE

QUANTUM OBJECT IS DOING! If you get the data, then the object is
not quantum. Do not ask because there will be no data! Einstein had some

problems. He asked questions. Einstein looked at the moon and it was real.
Einstein stopped looking. Then what? We think the moon is still real, but

the contrary has been proposed by some perfectly competent physicists. So
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it is our prejudice that the moon is real! And we really do not care who looks

at it.

2 What is Virtual and What is Real in Par-

ticle Physics?

In particle physics there are theoretical and experimental views of the matter.

From the theoretical view we would take as \virtual" the somewhat technical

but conventional de�nition of those processes in the \internal parts" of the

Feynman diagrams. Consider the Feynman diagram in Fig.1. The \external

legs" (solid lines) are real. In the laboratory they show up as data, e.g.

particle tracks. You see them in an experiment. The dotted line is internal.
That is a \virtual" particle. Bohr has warned us not ask about the virtual
quantum process. You are not meant to know (dear reader) about the virtual.

Do not ask! For example, there are two (Bohr) complimentary views: (i) four
momentum space amplitudes and (ii) space-time amplitudes.

(i) In momentum space the \virtual particle" dotted line in Fig.1 has a
nice four momentum label Pvirtual. That seems simple enough. The only
problem is that

[P 2
virtual + (Mc)2] 6= 0: (possibly off mass shell): (1a)

Virtual particles may not be on the \mass shell". Real particles are on the

mass shell. Virtual particles are not real. Bohr warned us not to ask.
(ii) The space-time \virtual particle" in the words of Feynman \...does

anything it likes...". It goes forward in time. It goes backward in time. It
goes space-like. Any old speed said Feynman. Anything it likes,

x2virtual = r2virtual � c2t2virtual > 0 (possibly superluminal speed): (1b)

STOP IT! Bohr dictates the if it is virtual, then do not ask. Virtual particles
are not real. There will be no data.

(iii) But experimentalists tell us every day that there are data on virtual
particles you do not actually see. Look again at the Feynman diagram of

Fig.1. Suppose the external legs are measured tracks shown in postscript
colors on an experimentalist's transparency (right after we see a small person

standing next to a huge machine). We do not see the dotted line. The right
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tracks lead to a primary vertex and left tracks emerge from the secondary

vertex. The dotted line is a particle that moved from the primary vertex to

the secondary vertex. Only nobody sees it! It had no charge! It left no track!

But we all know it was there. This, by our de�nition, is an experimental

virtual particle. It moved from vertex to vertex and nobody saw it. We are

not talking about the moon. We are talking about an elementary particle. If

you do not see it, then it is virtual. But the experimentalists tell us that this

virtual particle moved from the primary vertex y to the secondary vertex x

along a classical path at constant (four velocity) v and on the mass shell,

x� = y� + v��; (experimental virtual particle); (2a)

P 2
virtual + (Mc)2 = M2(v2+ c2) = 0; (experimental virtual particle): (2b)

Comparing the experimentally employed Eqs.(2) to the exciting theoretical

possibilities in Eqs.(1), we �nd that the experimentalist's virtual particle is
rather dull and classical, i.e. it looks real (not virtual) even if you do not see

it.
Bohr had all the answers. He threw in the correspondence principle along

with the complimentarity of momentum space and space-time. Only Einstein

was worried. The correspondence principle says that when the action of the
particle is large on the scale of �h the particle is classical even if you do not

look at it. The particle going from the primary to the secondary vertex had
to move so far that the action was very large compared with �h. The particle
may do \anything it likes", but when the action is large it \likes" to be

classical with overwhelming probability. To do otherwise would have such
small probability as to be a miracle. Miracles can happen, but they are hard
to duplicate. There are no good statistics on miracles.

The mathematics is that the propagator from vertex to vertex

[�@�@
� + �2]D(x� y) = �(x� y); � = (Mc=�h); (3)

has the Dirac-Feynman path integral representation

D(x� y) =
Z z(�)=x

z(0)=y

Y
�

�
DpDz

2��h

�
exp

i

�h

Z x

y
[p�dz

� �H(p)d� ]; (4)

where

H(p) =
1

2M
[p2 + (Mc)2]: (5)
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If the particle were classical, then the free particle Hamilton-Jacobi equation

[4]

�
@S

@�
= H

 
p =

@S

@x

!
; (6a)

S(x� y; � ) = �
Mc2

2

 
� �

(x� y)2

c2�

!
; (6b)

would yield the classical experimental Eqs.(2) via the equations

�
@S

@�
= 0; S = �Mc

q
�(x� y)2; M

dx�

d�
= @�S: (6c)

The actual space-time propagator in the Schwinger \proper time" represen-

tation is given by

D(x� y) =
M

8�2�h

Z
1

0

 
d�

� 2

!
exp

i

�h
S(x� y; � ); (7)

where the proper time � internal to the particle need not be the laboratory

proper time
q
�(x� y)2=c2 between the vertex events. The particle has all

the proper time in the world to do what it likes; forward in time, backward in
time, spacelike ... and so forth. But the Bohr correspondence principle tells
us that when the action in Eq.(7) obeys jSj >> �h, then the stationary phase

evaluation of the proper-time integral in Eq.(7) yields � =
q
�(x� y)2=c2

and what the particle then likes to do is to be classical. The experimentalist
has every right to suppose that the \virtual particle" is classical even if

nobody detects the path, and likewise for the moon. If Bohr's correspondence
holds true, then all is right with this boring world. But when a particle shows
up that exhibits virtual quantum interference, in spite of the correspondence
principle, everybody says that this particle must be very strange.

3 The \Ko
K

o
" Particle

The \Ko �Ko" virtual particle is not merely strange, it has some deep psycho-

logical problems. It cannot decide whether to exhibit itself as a Ko going

forward in time or as �Ko going backward in time. (The language is that of

St�uckelberg and Feynman.) If the dotted line in Fig.1 is \Ko �Ko" as a virtual
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particle, it will never be classical even for jSj >> �h because any decent free

classical particle (or classical anti-particle) will make up its mind once and

for all which direction in time it wants to go and then it learns to live in psy-

chological peace with its decision. Hence, the Bohr correspondence principle

works very well except for those cases where it does not work very well.

If a \Ko �Ko" T violating particle (we assume TCP=1) goes from a primary

to a secondary vertex its inner turmoil refuses the classical limit of the Bohr

correspondence principle and remains truly virtual, oscillating with quantum

interference phase factors. Very good. Now the Bohr dictate is that we

cannot ask what the \Ko �Ko" is doing. But it is really hard not to try and

form a mental picture such as maybe the particle path is still classical but

\wobbles" a little bit.

The mathematics is that the (two by two) non-Hermitian mass matrix of
the \Ko �Ko" [5, 6]

M = M � i(�h�=2c2); (8)

produces the (two by two) \wobbly" propagator

D(x � y) =
M

8�2�h

Z
1

0

 
d�

� 2

!
exp

iM

2�h
[�c2� +

(x� y)2

�
]: (9)

The Bohr correspondence principle tells us to evaluate the proper time inte-
gral by stationary phase yielding the particle proper time as the laboratory
proper-time so that asymptotically the particle has the laboratory proper-
time

D(x � y) � e�iMc2�=�h; �c2� 2 � (x� y)2; (10)

and we are allowed (if we choose) to think of the propagator Eqs.(9) and (10)
as a proper time Schr�odinger equation

i�h
@

@�

 
AKo(� )
AK

o(� )

!
=Mc2

 
AKo(� )
AK

o(� )

!
; (11)

but we are not allowed to think of the \Ko �Ko" traveling from a primary
vertex to a secondary vertex as real (i.e. classical). It is truly an experimental
virtual particle. Typical of this kind of experiment is the CPLEAR project

[7] where the Feynman diagram of a typical event is shown in Fig.2. The

\Ko �Ko" is not observed (there is no track) and it is truly virtual because
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you cannot Bohr correspond when you need a Schr�odinger equation. Bohr

has warned us about getting data from a quantum object.

One notes that the four velocity of the \Ko �Ko" particle

v� =
(x� � y�)

�
; � =

s
�(x� y)2

c2
; (12)

is determined if we know the space-time positions of the vertex events in

which the classical paths (legs of the Feynman diagrams) are located. That

the \Ko �Ko" particle is still virtual is due to the fact that it has two possible

(\long" or \short") four momenta

pL = MLv or pS = MSv; (13)

so that a typical amplitude

A(� ) = ALe
��L�=2e�iMLc

2�=�h +ASe
��S�=2e�iMSc

2�=�h; (14)

has two \plane wave" �xed momentum states going from vertex y to vertex
x, e.g. in Eqs.(12), (13) and (14)

exp(�iMjc
2�=�h) = exp(ipj � (x� y)=�h); j = L or S: (15)

The notion that the single virtual \Ko �Ko" has no trouble making up its mind
as to its velocity but becomes confused about what should be its momentum,

due to its mass splitting �M = (ML �MS), is crucial to the conventional
analysis of single D(x; y) propagator experiments (even when a regenerator
is included as part of the propagator). While theoretically this seems all
right, e.g. the value of �M found in CPLEAR should agree with �M in
regenerator experiments [8], we still feel somewhat uncomfortable with the

result.
If the single virtual (large spreading wave packet) \Ko �Ko" is in a su-

perposition of two plane wave momentum states, as in Eqs.(14) and (15),

and this particle scatters o� other particles, should not some other parti-
cles also have trouble deciding in which momentum states they are? After
all, no matter what the state of mind of each particle may be, there should

be four momentum conservation. In other words, if an initial state is in a

superposition of two di�erent incoming four momenta (P1 and P2), i.e.

j	 >= c1jin; P1 > +c2jin; P2 >; (16a)
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and if the scattering operator conserves four momenta, i.e.

Sj	 >= c1jout; P1 > +c2jout; P2 >; (16a)

then shouldn't the outgoing particles (with the same amplitudes c1 and c2)

also be in superposition? The confused particles would also be virtual, since

Bohr dictates that those particles which leave tracks are real and classical

and thereby do not maintain \superpositions". The superposition principle

has to be relegated to the virtual processes that you do not observe, and

don't ask what a virtual particle is doing because there will be no data!

Let us now proceed to \two propagator" experiments wherein there are at

least two virtual particles. These include the proposed � factory experiments,

and here momentum conservation has some unusual implications.

4 Two Propagator Experiments

Shown in Fig.3 (below) are typical Feynman diagrams of a previous two
propagator experiment [9] (which involves a virtual �) as well as a virtual
\Ko �Ko". Also shown is a typical two propagator Feynman diagram for a
process anticipated at the � factory [10]. If the \Ko �Ko" internal propagators

are forced to have a superposition of two four momentum states, then we
have predicted that even the � would be forced to be in a superposition of
two momentum states. \� oscillations" [11] would be the result of such a
superposition, born by a combination of the mass splitting �M = (ML�MS)
and of momentum conservation at the �Ko + p+ ! �+ �+ vertex. The inner

turmoil of the \Ko �Ko" spreads to any other virtual particle connected to it
in the Feynman diagram.

To see that a discussion of the real and the virtual is not trivial, consider
the � factory two virtual K meson process. The total four momentum is
determined by the real electron positron pair producing the �,

P� = pe+ + pe� = pL;left + pS;right = pS;left + pL;right: (17)

Now, from the two propagators you try to put together a simple two particle

wave function (not quite a Schr�odinger wavefunction because there are too

many \times"),

	simple(�right; �left) = AL(�right)AS(�left) �AL(�left)AS(�right); (18)
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where

Aj(� ) = e��j�=2e�iMjc
2�=�h (j = L orS): (19)

But we �nd that the total momentum conservation Eq.(17) cannot be main-

tained by Eq.(18); e.g., see Eq.(15),

AL(�right)AS(�left) � exp
i

�h
(pL � xright + pS � xleft); (20a)

AL(�left)AS(�right) � exp
i

�h
(pL � xleft + pS � xright); (20b)

but the two plane waves in 	simple will not conserve total momentum unless

pL = pR (false!). This ultimately violates the one velocity and two momenta

inner turmoil Eq.(13), and would thereby a�ord an undue psychological relief

to the mass di�erence induced Ko �Ko oscillations. So, the simple wave func-
tion in Eq.(18) appears inadequate for describing the two propagator result,

if conservation of total momentum is strictly applied [12].
What is needed for conservation of total momentum is precisely what

is written in Eq.(17), which actually describes conservation of momentum.
Only one needs more proper times in the amplitude, because you need more
momenta in the plane waves

	(�L;right; �L;left; �S;right; �S;left) =

AL(�L;right)AS(�S;left)�AL(�L;left)AS(�S;right): (21)

What can we do with all of those times (don't ask!)? Here are the numbers
we promised you (dear reader) in Sec.1. Actually it is one (singular) number
but it is predicted to occur very often in the data.

When you absolute square amplitudes with a wave function that has two
terms, e.g. Eq.(21), the cross terms give you interference. For the problem
at hand the interference phase is given by

� =
c2

�h
[ML(�L;left � �L;right)�MS(�S;left � �S;right)]: (22)

De�ning averages and di�erences

�i = (1=2)(�L;i + �S;i); (i = left or right); (23a)

��i = �L;i � �S;i; (i = left or right); (23b)
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�M = (1=2)(ML +MS); �M = (ML �MS); (23c)

we �nd from Eqs.(22) and (23),

(�h�=c2) = �M (��left ���right) + �M(�left � �right): (24)

The �rst term on the left hand side Eq.(24) would not be present if we

employed Eq.(18). But again by conservation of momentum we �nd the two

terms on the right hand side of Eq.(24) approximately equal, and thus the

factor of two in our �nal result

� = 2(c2�M=�h)(�left � �right): (25)

The factor of \2" in Eq.(25) is the central result of this work.

5 Conclusion

We are emotional about a factor of \2" because we believe it says something
unexpected about what is virtual and what is real. Others are very emotional

about it because they calculate the factor to be \1"!. But the nice thing
about it, is that the answer will surely be found at the � factory, with the
experimentalists as the �nal referees. In Italy, where Galileo taught us that
experimental data are the �nal arbiters in a theoretical dispute, what else
could happen?
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