11,752 research outputs found

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    Measuring software technology

    Get PDF
    Results are reported from a series of investigations into the effectiveness of various methods and tools used in a software production environment. The basis for the analysis is a project data base, built through extensive data collection and process instrumentation. The project profiles become an organizational memory, serving as a reference point for an active program of measurement and experimentation on software technology

    Generalized Hot Enhancons

    Full text link
    We review what has been learnt and what remains unknown about the physics of hot enhancons following studies in supergravity. We recall a rather general family of static, spherically symmetric, non-extremal enhancon solutions describing D4 branes wrapped on K3 and discuss physical aspects of the solutions. We embed these solutions in the six dimensional supergravity describing Type IIA strings on K3 and generalize them to have arbitrary charge vector. This allows us to demonstrate the equivalence with a known family of hot fractional D0 brane solutions, to widen the class of solutions of this second type and to carry much of the discussion across from the D4 brane analysis. In particular we argue for the existence of a horizon branch for these branes.Comment: 25 pages, Late

    Evaporation of a Kerr black hole by emission of scalar and higher spin particles

    Get PDF
    We study the evolution of an evaporating rotating black hole, described by the Kerr metric, which is emitting either solely massless scalar particles or a mixture of massless scalar and nonzero spin particles. Allowing the hole to radiate scalar particles increases the mass loss rate and decreases the angular momentum loss rate relative to a black hole which is radiating nonzero spin particles. The presence of scalar radiation can cause the evaporating hole to asymptotically approach a state which is described by a nonzero value of a∗≡a/Ma_* \equiv a / M. This is contrary to the conventional view of black hole evaporation, wherein all black holes spin down more rapidly than they lose mass. A hole emitting solely scalar radiation will approach a final asymptotic state described by a∗≃0.555a_* \simeq 0.555. A black hole that is emitting scalar particles and a canonical set of nonzero spin particles (3 species of neutrinos, a single photon species, and a single graviton species) will asymptotically approach a nonzero value of a∗a_* only if there are at least 32 massless scalar fields. We also calculate the lifetime of a primordial black hole that formed with a value of the rotation parameter a∗a_{*}, the minimum initial mass of a primordial black hole that is seen today with a rotation parameter a∗a_{*}, and the entropy of a black hole that is emitting scalar or higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for variables, added journal referenc

    Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition

    Full text link
    We investigate long-range intensity correlations on both sides of the Anderson transition of classical waves in a three-dimensional (3D) disordered material. Our ultrasonic experiments are designed to unambiguously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link between C0 and the anomalous dimension \Delta_2, implying that C0 may also be used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information). Updated version includes an improved introductory paragraph, minor text revisions, a revised title and additional supplemental information on the experimental detail

    Rotating Black Holes in Higher Dimensions with a Cosmological Constant

    Get PDF
    We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S^{D-2} bundles over S^2, infinitely many for each odd D\ge 5. Applications to string theory and M-theory are indicated.Comment: 8 pages, Latex. Short version, with more compact notation, of hep-th/0404008. To appear in Phys. Rev. Let

    Numerical modeling of dynamic powder compaction using the Kawakita equation of state

    Get PDF
    Dynamic powder compaction is analyzed using the assumption that the powder behaves, while it is being compacted, like a hydrodynamic fluid in which deviatoric stress and heat conduction effects can be ignored throughout the process. This enables techniques of computational fluid dynamics such the equilibrium flux method to be used as a modeling tool. The equation of state of the powder under compression is assumed to be a modified version of the Kawakita loading curve. Computer simulations using this model are performed for conditions matching as closely as possible with those from experiments by Page and Killen [Powder Metall. 30, 233 (1987)]. The numerical and experimental results are compared and a surprising degree of qualitative agreement is observed

    Black Hole Motion in Entropic Reformulation of General Relativity

    Full text link
    We consider a system of black holes -- a simplest substitute of a system of point particles in the mechanics of general relativity -- and try to describe their motion with the help of entropic action: a sum of the areas of black hole horizons. We demonstrate that such description is indeed consistent with the Newton's laws of motion and gravity, modulo numerical coefficients, which coincide but seem different from unity. Since a large part of the modern discussion of entropic reformulation of general relativity is actually based on dimensional considerations, for making a next step it is crucially important to modify the argument, so that these dimensionless parameters acquire correct values.Comment: 6 page

    Locating Overlap Information in Quantum Systems

    Full text link
    When discussing the black hole information problem the term ``information flow'' is frequently used in a rather loose fashion. In this article I attempt to make this notion more concrete. I consider a Hilbert space which is constructed as a tensor product of two subspaces (representing for example inside and outside the black hole). I discuss how the system has the capacity to contain information which is in NEITHER of the subspaces. I attempt to quantify the amount of information located in each of the two subspaces, and elsewhere, and analyze the extent to which unitary evolution can correspond to ``information flow''. I define the notion of ``overlap information'' which appears to be well suited to the problem.Comment: 25 pages plain LaTeX, no figures. Imperial/TP/93-94/2

    Information-theoretic determination of ponderomotive forces

    Full text link
    From the equilibrium condition ήS=0\delta S=0 applied to an isolated thermodynamic system of electrically charged particles and the fundamental equation of thermodynamics (dU=TdS−(f⋅dr)dU = T dS-(\mathbf{f}\cdot d\mathbf{r})) subject to a new procedure, it is obtained the Lorentz's force together with non-inertial terms of mechanical nature. Other well known ponderomotive forces, like the Stern-Gerlach's force and a force term related to the Einstein-de Haas's effect are also obtained. In addition, a new force term appears, possibly related to a change in weight when a system of charged particles is accelerated.Comment: 10 page
    • 

    corecore