5,909 research outputs found
Turning off the Lights: How Dark is Dark Matter?
We consider current observational constraints on the electromagnetic charge
of dark matter. The velocity dependence of the scattering cross-section through
the photon gives rise to qualitatively different constraints than standard dark
matter scattering through massive force carriers. In particular, recombination
epoch observations of dark matter density perturbations require that
, the ratio of the dark matter to electronic charge, is less than
for , rising to for .
Though naively one would expect that dark matter carrying a charge well below
this constraint could still give rise to large scattering in current direct
detection experiments, we show that charged dark matter particles that could be
detected with upcoming experiments are expected to be evacuated from the
Galactic disk by the Galactic magnetic fields and supernova shock waves, and
hence will not give rise to a signal. Thus dark matter with a small charge is
likely not a source of a signal in current or upcoming dark matter direct
detection experiments.Comment: 19 pages, 2 figures; v2 - figures fixed, references adde
Using Economic Instruments to Develop Effective Management of Invasive Species: Insights From a Bioeconomic Model
Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored (independent management). Our modeling approach used a dynamic optimization framework, and we applied the model to invader spread using Linaria vulgaris. Model simulations allowed us to determine the optimal management strategy based on net benefits for a range of invader densities. We found that optimal management strategies varied as a function of initial plant densities. At low densities, net benefits were high for both collective and independent management to eradicate the invader, suggesting the importance of early detection and eradication. At moderate densities, collective management led to faster and more frequent invader eradication compared to independent management. When we used a financial penalty to ensure that independent properties were managed collectively, we found that the penalty would be most feasible when levied on a property\u27s perimeter boundary to control spread among properties. At the highest densities, the optimal management strategy was âdo nothingâ because the economic costs of removal were too high relative to the benefits of removal. Spatial variation in L. vulgaris densities resulted in different optimal management strategies for neighboring properties, making a formal economic policy to encourage invasive species removal critical. To accomplish the management and enforcement of these economic policies, we discuss modification of existing agencies and infrastructure. Finally, a sensitivity analysis revealed that lowering the economic cost of invader removal would strongly increase the probability of invader eradication. Taken together, our results provide quantitative insight into management decisions and economic policy instruments that can encourage invasive species removal across a social landscape
Using Economic Instruments to Develop Effective Management of Invasive Species: Insights From a Bioeconomic Model
Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored (independent management). Our modeling approach used a dynamic optimization framework, and we applied the model to invader spread using Linaria vulgaris. Model simulations allowed us to determine the optimal management strategy based on net benefits for a range of invader densities. We found that optimal management strategies varied as a function of initial plant densities. At low densities, net benefits were high for both collective and independent management to eradicate the invader, suggesting the importance of early detection and eradication. At moderate densities, collective management led to faster and more frequent invader eradication compared to independent management. When we used a financial penalty to ensure that independent properties were managed collectively, we found that the penalty would be most feasible when levied on a property\u27s perimeter boundary to control spread among properties. At the highest densities, the optimal management strategy was do nothing because the economic costs of removal were too high relative to the benefits of removal. Spatial variation in L. vulgaris densities resulted in different optimal management strategies for neighboring properties, making a formal economic policy to encourage invasive species removal critical. To accomplish the management and enforcement of these economic policies, we discuss modification of existing agencies and infrastructure. Finally, a sensitivity analysis revealed that lowering the economic cost of invader removal would strongly increase the probability of invader eradication. Taken together, our results provide quantitative insight into management decisions and economic policy instruments that can encourage invasive species removal across a social landscape
Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak
Access conditions for full suppression of Edge Localised Modes (ELMs) by
Magnetic Perturbations (MP) in low density high confinement mode (H-mode)
plasmas are studied in the ASDEX Upgrade tokamak. The main empirical
requirements for full ELM suppression in our experiments are: 1. The poloidal
spectrum of the MP must be aligned for best plasma response from weakly stable
kink-modes, which amplify the perturbation, 2. The plasma edge density must be
below a critical value, ~m. The edge collisionality
is in the range (ions) and
(electrons). However, our data does not show that the edge collisionality is
the critical parameter that governs access to ELM suppression. 3. The pedestal
pressure must be kept sufficiently low to avoid destabilisation of small ELMs.
This requirement implies a systematic reduction of pedestal pressure of
typically 30\% compared to unmitigated ELMy H-mode in otherwise similar
plasmas. 4. The edge safety factor lies within a certain window.
Within the range probed so far, , one such window,
has been identified. Within the range of plasma rotation
encountered so far, no apparent threshold of plasma rotation for ELM
suppression is found. This includes cases with large cross field electron flow
in the entire pedestal region, for which two-fluid MHD models predict that the
resistive plasma response to the applied MP is shielded
I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties
The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g.
with unfavourable ion
B
â
direction. It is characterised by the development of a temperature
pedestal while the density remains roughly as in the L-mode. This leads to a confinement
improvement above the L-mode level which can sometimes reach H-mode values. This
regime, already obtained in the ASDEX Upgrade tokamak about two decades ago, has
been studied again since 2009 taking advantage of the development of new diagnostics
and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different
heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold,
pedestal characteristics and confinement, are independent of the heating method. The power
required at the L-I transition exhibits an offset linear density dependence but, in contrast
to the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be
mainly determined by the edge pressure gradient and the comparison between ECRH and
NBI induced L-I transitions suggests that the ion channel plays a key role. The I-mode often
evolves gradually over a few confinement times until the transition to H-mode which offers
a very interesting situation to study the transport reduction and its link with the pedestal
formation. Exploratory discharges in which
n
=
2 magnetic perturbations have been applied
indicate that these can lead to an increase of the I-mode power threshold by flattening the edge
pressure at fixed heating input power: more heating power is necessary to restore the required
edge pressure gradient. Finally, the confinement properties of the I-mode are discussed in
detail.European Commission (EUROfusion 633053
Generation of Three-Qubit Entangled States using Superconducting Phase Qubits
Entanglement is one of the key resources required for quantum computation, so
experimentally creating and measuring entangled states is of crucial importance
in the various physical implementations of a quantum computer. In
superconducting qubits, two-qubit entangled states have been demonstrated and
used to show violations of Bell's Inequality and to implement simple quantum
algorithms. Unlike the two-qubit case, however, where all maximally-entangled
two-qubit states are equivalent up to local changes of basis, three qubits can
be entangled in two fundamentally different ways, typified by the states
and . Here we demonstrate the operation of three coupled
superconducting phase qubits and use them to create and measure
and states. The states are fully characterized
using quantum state tomography and are shown to satisfy entanglement witnesses,
confirming that they are indeed examples of three-qubit entanglement and are
not separable into mixtures of two-qubit entanglement.Comment: 9 pages, 5 figures. Version 2: added supplementary information and
fixed image distortion in Figure 2
- âŠ