31 research outputs found

    Adiabatic motions of charged particles in a dipole model of the magnetosphere

    Get PDF
    Adiabatic invariants of charged particle motion used to calculate trajectories of particles in dipole model of magnetospher

    Adiabatic motion of auroral particles in a model of the electric and magnetic fields surrounding the earth

    Get PDF
    Adiabatic motion of auroral particles in model of earth electric and magnetic fiel

    Influence of the Earth's Rotation upon the Interaction of the Solar Wind with the Magnetosphere

    Get PDF
    Earth rotation influence on coupling of solar wind with magnetospher

    Multiple crossings of a very thin plasma sheet in the Earth's magnetotail

    Get PDF
    High resolution magnetic field, plasma and energetic particle data from the IMP-8 spacecraft were studied for multiple crossings of the Earth's magnetotail plasma sheet when it becomes thin during magnetospheric substorms. Traversals recur on a time scale of several minutes and they are associated with high velocity plasma flows that are usually directed tailward but are occasionally directed earthward for brief intervals. Observations are explained by rapid oscillations of a plasma sheet that is only a few thousand km thick, a dimension comparable to the gyroradius of energetic protons. Differences in the angular distributions of the two energies indicate that the higher energy protons are preferentially located on field lines deeper in the tail lobe. A neutral line acceleration model is supported tailward streaming energetic electrons which are occasionally present at the lobe plasma sheet interface

    The electric field generated by a rotating magnetized sphere

    Get PDF
    Electric field of rotating magnetized sphere with arbitrarily aligned axes of rotation and magnetizatio

    Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral-zone activity

    Get PDF
    Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion

    Simultaneous measurements of magnetotail dynamics by IMP spacecraft

    Get PDF
    Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail

    Structure of the low latitude boundary layer

    Get PDF
    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more

    Plasma behavior during energetic electron streaming events: Further evidence for substorm-associated magnetic reconnection

    Get PDF
    A recent study showed that streaming energetic (〉200 keV) electrons in Earth's magnetotail are statistically associated with southward magnetic fields and with enhancements of the AE index. It is shown here that the streaming electrons characteristically are preceded by a ∼15 minute period of tailward plasma flow and followed by a dropout of the plasma sheet, thus demonstrating a clear statistical association between substorms and the classical signatures of magnetic reconnection and plasmoid formation. Additionally, a brief upward surge of mean electron energy preceded plasma dropout in several of the events studied, providing direct evidence of localized, reconnection-associated heating processes
    corecore