3,920 research outputs found

    Selfduality of non-linear electrodynamics with derivative corrections

    Get PDF
    In this paper we investigate how electromagnetic duality survives derivative corrections to classical non-linear electrodynamics. In particular, we establish that electromagnetic selfduality is satisfied to all orders in α′\alpha' for the four-point function sector of the four dimensional open string effective action.Comment: 8 page

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    Measurement of atomic diffraction phases induced by material gratings

    Full text link
    Atom-surface interactions can significantly modify the intensity and phase of atom de Broglie waves diffracted by a silicon nitride grating. This affects the operation of a material grating as a coherent beam splitter. The phase shift induced by diffraction is measured by comparing the relative phases of serveral interfering paths in a Mach-Zehnder Na atom interferometer formed by three material gratings. The values of the diffraction phases are consistent with a simple model which includes a van der Waals atom-surface interaction between the Na atoms and the silicon nitride grating bars.Comment: 4 pages, 5 figures, submitted to PR

    (Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory

    Get PDF
    In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum mechanics," Pascual Jordan (1927b,g) presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. As an alternative that avoids the mathematical difficulties facing the approach of Jordan and Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert space formalism of quantum mechanics. In this paper, we focus on Jordan and von Neumann. Central to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identication of sets of canonically conjugate variables, i.e., p's and q's. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identication of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p's and q's. Jordan and von Neumann also stated the characteristic new rules for probabilities in quantum mechanics somewhat differently. Jordan (1927b) was the first to state those rules in full generality. Von Neumann (1927a) rephrased them and, in a subsequent paper (von Neumann, 1927b), sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics.Comment: New version. The main difference with the old version is that the introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has been accepted for publication in European Physical Journal

    Thermodynamics of rotating black branes in (n+1)(n+1)-dimensional Einstein-Born-Infeld gravity

    Get PDF
    We construct a new class of charged rotating solutions of (n+1)(n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space.Comment: 12 pages, one figur

    The Minkowski metric in non-inertial observer radar coordinates

    Full text link
    We give a closed expression for the Minkowski (1+1)-dimensional metric in the radar coordinates of an arbitrary non-inertial observer O in terms of O's proper acceleration. Knowledge of the metric allows the non-inertial observer to perform experiments in spacetime without making reference to inertial frames. To clarify the relation between inertial and non-inertial observers the coordinate transformation between radar and inertial coordinates, also is given. We show that every conformally flat coordinate system can be regarded as the radar coordinate system of a suitable observer for a suitable parametrization of the observer worldline. Therefore, the coordinate transformation between arbitrarily moving observers is a conformal transformation and conformally invariant (1+1)-dimensional theories lead to the same physics for all observers, independently of their relative motion.Comment: Revtex4, 6 pages, 1 figur

    Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions

    Full text link
    We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom distance, atoms-wall distance and temperature.Comment: 11 page

    Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems

    Full text link
    The velocity vresv_{res} of resonant tunneling electrons in finite periodic structures is analytically calculated in two ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still competing tunneling time definitions. Thus, having an indisputable resonant tunneling time Ď„res,\tau_{res}, we apply the natural definition vres=L/Ď„resv_{res}=L/\tau_{res} to calculate the velocity. For the second method we combine Bloch's theorem with the transfer matrix approach to decompose the wave function into two Bloch waves. Then the expectation value of the velocity is calculated. Both different approaches lead to the same result, showing their physical equivalence. The obtained resonant tunneling velocity vresv_{res} is smaller or equal to the group velocity times the magnitude of the complex transmission amplitude of the unit cell. Only at energies where the unit cell of the periodic structure has a transmission of unity vresv_{res} equals the group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are performed. For typical parameters the resonant velocity is below one third of the group velocity.Comment: 12 pages, 3 figures, LaTe

    Power dependence of pure spin current injection by quantum interference

    Get PDF
    We investigate the power dependence of pure spin current injection in GaAs bulk and quantum-well samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition pathways driven by two laser pulses. By keeping the relaxation time of the current unchanged, we are able to relate the spin separation to the injected average velocity. We find that the average velocity is determined by the relative strength of the two transitions in the same way as in classical interference. Based on this, we conclude that the density of injected pure spin current increases monotonically with the excitation laser intensities. The experimental results are consistent with theoretical calculations based on Fermi's golden rule.Comment: 6 pages, 4 figure

    Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble

    Get PDF
    The main objective of this paper is to study thermodynamics and stability of static electrically charged Born-Infeld black holes in AdS space in D=4. The Euclidean action for the grand canonical ensemble is computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes are studied in detail by studying the free energy for various potentials. For small values of the potential, we find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS space. For large potentials, the black hole phase is dominant and are preferred over the thermal-AdS space. Local stability is studied by computing the specific heat for constant potentials. The non-extreme black holes have two branches: small black holes are unstable and the large black holes are stable. The extreme black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we also show that the phase structure relating the mass MM and the charge QQ of the black holes is similar to the liquid-gas-solid phase diagram.Comment: Accepted to be published in Physical Review D. Minor change
    • …
    corecore