1,683 research outputs found
Confusion of Diffuse Objects in the X-ray Sky
Most of the baryons in the present-day universe are thought to reside in
intergalactic space at temperatures of 10^5-10^7 K. X-ray emission from these
baryons contributes a modest (~10%) fraction of the ~ 1 keV background whose
prominence within the large-scale cosmic web depends on the amount of
non-gravitational energy injected into intergalactic space by supernovae and
AGNs. Here we show that the virialized regions of groups and clusters cover
over a third of the sky, creating a source-confusion problem that may hinder
X-ray searches for individual intercluster filaments and contaminate
observations of distant groups.Comment: accepted to ApJ Letters, 7 pages, 3 figure
Near-infrared K-band Spectroscopic Investigation of Seyfert 2 Nuclei in the CfA and 12 Micron Samples
We present near-infrared K-band slit spectra of the nuclei of 25 Seyfert 2
galaxies in the CfA and 12 micron samples. The strength of the CO absorption
features at 2.3-2.4 micron produced by stars is measured in terms of a
spectroscopic CO index. A clear anti-correlation between the observed CO index
and the nuclear K-L color is present, suggesting that a featureless hot dust
continuum heated by an AGN contributes significantly to the observed K-band
fluxes in the nuclei of Seyfert 2 galaxies. After correction for this AGN
contribution, we estimate nuclear stellar K-band luminosities for all sources,
and CO indices for sources with modestly large observed CO indices. The
corrected CO indices for 10 (=40%) Seyfert 2 nuclei are found to be as high as
those observed in star-forming or elliptical (=spheroidal) galaxies. We combine
the K-band data with measurements of the L-band 3.3 micron polycyclic aromatic
hydrocarbon (PAH) emission feature, another powerful indicator for
star-formation, and find that the 3.3 micron PAH to K-band stellar luminosity
ratios are substantially smaller than those of starburst galaxies. Our results
suggest that the 3.3 micron PAH emission originates in the putative nuclear
starbursts in the dusty tori surrounding the AGNs, because of its high surface
brightness, whereas the K-band CO absorption features detected at the nuclei
are dominated by old bulge (=spheroid) stars, and thus may not be a powerful
indicator for the nuclear starbursts. We see no clear difference in the
strength of the CO absorption and PAH emission features between the CfA and 12
micron Seyfert 2s.Comment: 28 pages, 6 figures, accepted for publication in ApJ (10 October
2004, v614 issue
Infrared Emission from the Nearby Cool Core Cluster Abell 2597
We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool
core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the
Spitzer Space Telescope. The BCG was clearly detected in all Spitzer
bandpasses, including the 70 and 160 micron wavebands. We report aperture
photometry of the BCG. The spectral energy distribution exhibits a clear excess
in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate
of ~4-5 solar masses per year, consistent with the estimates from the UV and
its H-alpha luminosity. This large FIR luminosity is consistent with that of a
starburst or a Luminous Infrared Galaxy (LIRG), but together with a very
massive and old population of stars that dominate the energy output of the
galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes
indicate that the dust emitting mid-IR in this source is somewhat hotter than
the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher
FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky
3146.Comment: Accepted at Ap
On the Intracluster Medium in Cooling Flow & Non-Cooling Flow Clusters
Recent X-ray observations have highlighted clusters that lack entropy cores.
At first glance, these results appear to invalidate the preheated ICM models.
We show that a self-consistent preheating model, which factors in the effects
of radiative cooling, is in excellent agreement with the observations.
Moreover, the model naturally explains the intrinsic scatter in the L-T
relation, with ``cooling flow'' and ``non-cooling flow'' systems corresponding
to mildly and strongly preheated systems, respectively. We discuss why
preheating ought to be favoured over merging as a mechanism for the origin of
``non-cooling flow'' clusters.Comment: 4 pages, to appear in the proceedings of the "Multiwavelength
Cosmology" Conference held in Mykonos, Greece, June 2003, ed. M. Plionis
(Kluwer
Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension
The single electron Green's function of the one-dimensional
Tomonaga-Luttinger model in the presence of open boundaries is calculated with
bosonization methods. We show that the critical exponents of the local spectral
density and of the momentum distribution change in the presence of a boundary.
The well understood universal bulk behavior always crosses over to a boundary
dominated regime for small energies or small momenta. We show this crossover
explicitly for the large-U Hubbard model in the low-temperature limit.
Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb.
1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete
postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps
or by request from [email protected]
New selection rules for resonant Raman scattering on quantum wires
The bosonisation technique is used to calculate the resonant Raman spectrum
of a quantum wire with two electronic sub-bands occupied. Close to resonance,
the cross section at frequencies in the region of the inter sub-band
transitions shows distinct peaks in parallel polarisation of the incident and
scattered light that are signature of collective higher order spin density
excitations. This is in striking contrast to the conventional selection rule
for non-resonant Raman scattering according to which spin modes can appear only
in perpendicular polarisation. We predict a new selection rule for the
excitations observed near resonance, namely that, apart from charge density
excitations, only spin modes with positive group velocities can appear as peaks
in the spectra in parallel configuration close to resonance. The results are
consistent with all of the presently available experimental data.Comment: 7 pages, 2 figure
Mechanism of CDW-SDW Transition in One Dimension
The phase transition between charge- and spin-density-wave (CDW, SDW) phases
is studied in the one-dimensional extended Hubbard model at half-filling. We
discuss whether the transition can be described by the Gaussian and the
spin-gap transitions under charge-spin separation, or by a direct CDW-SDW
transition. We determine these phase boundaries by level crossings of
excitation spectra which are identified according to discrete symmetries of
wave functions. We conclude that the Gaussian and the spin-gap transitions take
place separately from weak- to intermediate-coupling region. This means that
the third phase exists between the CDW and the SDW states. Our results are also
consistent with those of the strong-coupling perturbative expansion and of the
direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from
http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Upper Critical Field in a Spin-Charge Separated Superconductor
It is demonstrated that the spatial decay of the pair propagator in a
Luttinger liquid with spin charge separation contains a logarithmic correction
relative to the free fermi gas result in a finite interval between the spin and
charge thermal lengths. It is argued that similar effects can be expected in
higher dimensional systems with spin charge separation and that the temperature
dependence of the upper critical field curve is a probe of this
effect.Comment: 3 pages, postscript file (compressed and uuencoded
- …
