15 research outputs found

    Unique ergodicity of circle and interval exchange transformations with flips

    Full text link
    We study the existence of transitive exchange maps with flips defined on the unit circle. We provide a complete answer to the question of whether there exists a transitive exchange map of the unit circle defined on n subintervals and having f flips.Comment: 13 pages, 6 figures; notational changes, smaller figure

    On two-dimensional surface attractors and repellers on 3-manifolds

    Get PDF
    We show that if f:M3→M3f: M^3\to M^3 is an AA-diffeomorphism with a surface two-dimensional attractor or repeller B\mathcal B and MB2 M^2_ \mathcal B is a supporting surface for B \mathcal B, then B=MB2\mathcal B = M^2_{\mathcal B} and there is k≥1k\geq 1 such that: 1) MB2M^2_{\mathcal B} is a union M12∪...∪Mk2M^2_1\cup...\cup M^2_k of disjoint tame surfaces such that every Mi2M^2_i is homeomorphic to the 2-torus T2T^2. 2) the restriction of fkf^k to Mi2M^2_i (i∈{1,...,k})(i\in\{1,...,k\}) is conjugate to Anosov automorphism of T2T^2

    Introduction to the qualitative theory of dynamical systems on surfaces

    No full text
    This book is an introduction to the qualitative theory of dynamical systems on manifolds of low dimension (on the circle and on surfaces). Along with classical results, it reflects the most significant achievements in this area obtained in recent times by Russian and foreign mathematicians whose work has not yet appeared in the monographic literature. The main stress here is put on global problems in the qualitative theory of flows on surfaces. Despite the fact that flows on surfaces have the same local structure as flows on the plane, they have many global properties intrinsic to multidimensional systems. This is connected mainly with the existence of nontrivial recurrent trajectories for such flows. The investigation of dynamical systems on surfaces is therefore a natural stage in the transition to multidimensional dynamical systems. The reader of this book need be familiar only with basic courses in differential equations and smooth manifolds. All the main definitions and concepts required for understanding the contents are given in the text. The results expounded can be used for investigating mathematical models of mechanical, physical, and other systems (billiards in polygons, the dynamics of a spinning top with nonholonomic constraints, the structure of liquid crystals, etc.). In our opinion the book should be useful not only to mathematicians in all areas, but also to specialists with a mathematical background who are studying dynamical processes: mechanical engineers, physicists, biologists, and so on
    corecore