1,517 research outputs found

    Free Meson Spectral Functions on the Lattice

    Full text link
    We present results from an analytic calculation of thermal meson spectral functions in the infinite temperature (free field) limit. We compare spectral functions for various lattice fermion formulations used at present in studies of in-medium properties of hadrons based on the maximum entropy method (MEM). In particular, we will present a new calculation of spectral functions performed with extended quark sources.Comment: 3 pages, Lattice2003(nonzero

    Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

    Get PDF
    The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS), the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd

    Medium Modifications of Charm and Charmonium in High-Energy Heavy-Ion Collisions

    Full text link
    The production of charmonia in heavy-ion collisions is investigated within a kinetic theory framework simultaneously accounting for dissociation and regeneration processes in both quark-gluon plasma (QGP) and hadron-gas phases of the reaction. In-medium modifications of open-charm states (c-quarks, D-mesons) and the survival of J/psi mesons in the QGP are included as inferred from lattice QCD. Pertinent consequences on equilibrium charmonium abundances are evaluated and found to be especially relevant to explain the measured centrality dependence of the psi'/psi ratio at SPS. Predictions for recent In-In experiments, as well as comparisons to current Au-Au data from RHIC, are provided.Comment: 4 Latex pages including 4 eps figures and IOP style files. Talk given at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2004, Oakland, CA USA, 11-17 Jan 2004. To appear in J. Phys.

    The Nucleosynthetic Imprint of 15-40 Solar Mass Primordial Supernovae on Metal-Poor Stars

    Full text link
    The inclusion of rotationally-induced mixing in stellar evolution can alter the structure and composition of presupernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar metallicity with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants. On the other hand, the Z=10^-4 solar metallicity models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal free stars than the Z = 10^-4 models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity 15 solar mass, 2.4 x 10^51 erg supernova. A Salpeter IMF averaged integration of our yields for Z=0 models with explosion energies of 2.4x10^51 ergs or less is in good agreement with the abundances observed in larger samples of extremely metal-poor stars, provided 15 solar mass stars are included. Since the abundance patterns of extremely metal-poor stars likely arise from a representative sample of progenitors, our yields suggest that low-mass supernovae contributed the bulk of the metals to the early universe.Comment: 16 pages, 11 figures; submitted to Ap

    First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star

    Full text link
    It has been proposed theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100Mo), because of inefficient cooling of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star -- HE0107-5240 -- was discovered. If this is a population III that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107-5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20-130Mo when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fall-back to form massive black holes. Such supernovae have been observed. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130-300 Mo. We accordingly infer that the first-generation supernovae came mostly from explosions of ~ 20-130Mo stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107-5240, could form because the carbon and oxygen provided pathways for gas to cool.Comment: To appear in NATURE 422 (2003), 871-873 (issue 24 April 2003); Title and the first paragraph have been changed and other minor corrections have been mad

    On the Relation Between Peak Luminosity and Parent Population of Type Ia Supernovae: A New Tool for Probing the Ages of Distant Galaxies

    Get PDF
    We study the properties of Type Ia Supernovae (SNe Ia) as functions of the radial distance from their host galaxy centers. Using a sample of 62 SNe Ia with reliable luminosity, reddening, and decline rate determinations, we find no significant radial gradients of SNe Ia peak absolute magnitudes or decline rates in elliptical+S0 galaxies, suggesting that the diversity of SN properties is not related to the metallicity of their progenitors. We do find that the range in brightness and light curve width of supernovae in spiral galaxies extends to brighter, broader values. These results are interpreted as support for an age, but not metallicity, related origin of the diversity in SNe Ia. If confirmed with a larger and more accurate sample of data, the age-luminosity relation would offer a new and powerful tool to probe the ages and age gradients of stellar populations in galaxies at redshift as high as z∼1−2z\sim1-2. The absence of significant radial gradients in the peak (B−V)0\rm (B-V)_0 and (V−I)0\rm (V-I)_0 colors of SNe Ia supports the redding correction method of Phillips et al (1999). We find no radial gradient in residuals from the SN Ia luminosity-width relation, suggesting that the relation is not affected by properties of the progenitor populations and supporting the reliability of cosmological results based upon the use of SNe Ia as distance indicators.Comment: 19 pages, incl. 3 tables & 3 figures; to appear in Nov 2000 issue of Ap

    Study of Charmonia near the deconfining transition on an anisotropic lattice with O(a) improved quark action

    Get PDF
    We study hadron properties near the deconfining transition in the quenched lattice QCD simulation. This paper focuses on the heavy quarkonium states, such as J/ψJ/\psi meson. In order to treat heavy quarks at T>0T>0, we adopt the O(a)O(a) improved Wilson action on anisotropic lattice. We discuss ccˉc\bar{c} bound state observing the wave function and compare the meson correlators at above and below TcT_c. Although we find a large change of correlator near the TcT_c, the strong spatial correlation which is almost the same as confinement phase survives even T∼1.5TcT\sim 1.5T_c.Comment: 19 pages, 10 figure
    • …
    corecore