8 research outputs found

    Phosphorus budget and phosphorus availability in soils under organic and conventional farming

    Get PDF
    The aim of this work was to assess to which extent organic farming practices would affect the accumulation of total and available phosphorus (P) in a cropped soil in comparison to conventional practices. In order to achieve this, soil samples were taken from a long-term field trial comparing a non-fertilised control (NON), two conventionally cultivated treatments (MIN, CON), and two organically cultivated treatments (ORG, DYN). Soil samples were taken from each treatment at two depths (0-20 and 30-50 cm) before starting the field trial (1977) and at the end of every three crop rotations (1984, 1991 and 1998). They were then analysed for total P (Pt), total inorganic P (Pi), total organic P (Po) and isotopically exchangeable Pi. After 21 years, the average P input-output budget reached -20.9 kg P ha−1 a−1 for NON, -7.8 for DYN, -5.7 for ORG, -5.0 for MIN and +3.8 for CON. Total P, Pi as well as the amount of Pi isotopically exchangeable within 1 minute (E1) were positively correlated to the P budget. Comparison between P budget and Pt in the top- and subsoils of the fertilised treatments suggested a net transfer of P from the 0-20 to the 30-50 cm layers between 13 and 26 kg P ha−1 a−1during the first rotation and between 3 and 12 kg P ha−1 a−1during the second rotation. During the third rotation a net upward movement of P from the subsurface to the topsoil ranging between 3.7 and 10.5 kg P ha−1 a−1was estimated. In the topsoil, E1decreased from an initial value of 12 mg P kg−1 to 11 in CON, 8 in MIN, 6 in ORG, 5 in DYN and 2 in NON after 21 years. In the subsoil, E1 increased from an initial value of 2 mg P kg−1 to 4 in MIN, ORG, DYN and NON and to 6 in CON. These results show that, with the exception of NON, all treatments had still an adequate level of available P after 21 years of trial and that, in this low to moderately P sorbing soil, an equilibrated input-output budget allows to maintain P availability at a constant level. In the organic systems, yields have so far partly been attained at the expense of soil reserves or residual P from earlier fertiliser application

    Phosphorus budget and phosphorus availability in soils under organic and conventional farming

    No full text
    The aim of this work was to assess to which extent organic farming practices would affect the accumulation of total and available phosphorus (P) in a cropped soil in comparison to conventional practices. In order to achieve this, soil samples were taken from a long-term field trial comparing a non-fertilised control (NON), two conventionally cultivated treatments (MIN, CON), and two organically cultivated treatments (ORG, DYN). Soil samples were taken from each treatment at two depths (0-20 and 30-50 cm) before starting the field trial (1977) and at the end of every three crop rotations (1984, 1991 and 1998). They were then analysed for total P (Pt ), total inorganic P (Pi ), total organic P (Po) and isotopically exchangeable Pi . After 21 years, the average P input-output budget reached -20.9 kg P ha−1 a−1 for NON, -7.8 for DYN, -5.7 for ORG, -5.0 for MIN and +3.8 for CON. Total P, Pi as well as the amount of Pi isotopically exchangeable within 1 minute (E1) were positively correlated to the P budget. Comparison between P budget and Pt in the top- and subsoils of the fertilised treatments suggested a net transfer of P from the 0–20 to the 30–50 cm layers between 13 and 26 kg P ha−1 a−1during the first rotation and between 3 and 12 kg P ha−1 a−1during the second rotation. During the third rotation a net upward movement of P from the subsurface to the topsoil ranging between 3.7 and 10.5 kg P ha−1 a−1was estimated. In the topsoil, E1decreased from an initial value of 12 mg P kg−1 to 11 in CON, 8 in MIN, 6 in ORG, 5 in DYN and 2 in NON after 21 years. In the subsoil, E1 increased from an initial value of 2 mg P kg−1 to 4 in MIN, ORG, DYN and NON and to 6 in CON. These results show that, with the exception of NON, all treatments had still an adequate level of available P after 21 years of trial and that, in this low to moderately P sorbing soil, an equilibrated input-output budget allows to maintain P availability at a constant level. In the organic systems, yields have so far partly been attained at the expense of soil reserves or residual P from earlier fertiliser applications

    Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories

    No full text
    Organic farming largely depends on animal manure as a source of phosphorus (P) and the recycling of animal manure globally is becoming increasingly important. In a pot experiment, using radioactive P labeling techniques, we studied ryegrass uptake of P applied with animal manure and water soluble mineral fertilizer to soils that had been cropped for 22 years according to organic or conventional farming practices. The soils differed in P status and microbial activity. Labeling soil-available P also allowed assessing the uptake from residual P that remained in the soils because of their different fertilization histories. On each soil, recovery of fresh manure P in four harvests of ryegrass shoots was lower than recovery of mineral P. It ranged from 24% to 35% for manure P and from 37% to 43% for mineral P. Recovery of fresh manure P was affected by soil-available P contents. It was lower at a higher available P in a conventional soil. Different levels in microbial activity among soils were of lesser importance for the recovery of fresh manure P in plants. The recovery of residual P ranged from9%to 15%. Residual P contained in organic cropped soils contributed less to P nutrition of ryegrass than the residual P contained in conventional cropped soils, probably due to their lower residual P contents being composed of stable P forms. The indirect isotope dilution technique is useful in assessing manure P uptake by plants, but attention must be given to added P interactions, i.e., the potential impact of organic amendments on P uptake from nonlabeled soil and residual P
    corecore