41 research outputs found

    In vitro simulation of dental implant bridges removal: Influence of luting agent and abutments geometry on retrievability

    Get PDF
    Implant fixed dental prostheses are widely used for the treatment of edentulism, often preferred over the screw-retained ones. However, one of the main features of an implant-supported prosthesis is retrievability, which could be necessary in the case of implant complications. In this study, the retrievability of implant-fixed dental prostheses was investigated considering two of the main factors dental practitioners have to deal with: the abutments geometry and the luting agent. Impulsive forces were applied to dental bridge models to simulate crowns’ retrievability in clinical conditions. The number of impulses and the impulsive force delivered during each test were recorded and used as retrievability indexes. One-hundred-and-five tests were conducted on 21 combinations of bridges and luting agents, and a Kruskal-Wallis test was performed on the results. The abutment geometry significantly influenced the number of impulses needed for retrieval (p < 0.05), and a cement-dependent trend was observed as well. On the other hand, the forces measured during tests showed no clear correlation with bridge retrievability. The best retrievability was obtained with long, slightly tapered abutments and a temporary luting agent

    In vitro impact testing to simulate implant-supported prosthesis retrievability in clinical practice: Influence of cement and abutment geometry

    Get PDF
    Cement-retained implant-supported prosthetics are gaining popularity compared to the alternative screw-retained type, a rise that serves to highlight the importance of retrievability. The aim of the present investigation is to determine the influence of luting agent, abutment height and taper angle on the retrievability of abutment-coping cementations. Abutments with different heights and tapers were screwed onto an implant and their cobalt-chrome copings were cemented on the abutments using three different luting agents. The removals were performed by means of CoronaflexÂź. The number of impulses and the forces were recorded and analyzed with a Kruskal-Wallis test. Harvard cement needed the highest number of impulses for retrieval, followed by Telio CS and Temp Bond. However, abutment height and taper showed a greater influence on the cap's retrievability (p < 0.05). Long and tapered abutments provided the highest percentage of good retrievability. The influence of the luting agent and the abutment geometry on the cap's retrieval performed by CoronaflexÂź reflects data from literature about the influence of the same factor on the maximum force reached during uniaxial tensile tests. The impulse force was slightly affected by the same factors

    Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    Get PDF
    Smart, sustainable and inclusive Blue Growth means also knowing past technology and the paths followed by ancients in order to understand and monitor marine environments. In general, history of Science is a matter that is not enough explored and explained or promoted in high schools or university official programmes, and, usually, scientist do not consider it as an important part of their curricula. However, bad or good ideas, abandoned or forgotten beliefs, concepts, opinions, do still have a great potential for inspiring present and future scientists, no matter in which historical period they may have been formulated: they should be always be taken into consideration, critically examined and observed by a very close point of view, not just as part of the intellectual framework of some obsolete ‘Cabinet of Curiosities’ with limited access except for the chosen few. Moreover, history of Science should be transmitted in a more practical way, with hands-on labs showing the limits and challenges that prior generations of ocean explorers, investigators and seafarers had to face in order to answer to crucial questions as self-orientation in open sea, understanding main currents and waves, predicting meteorological conditions for a safe navigation. Oceanography is a relatively young branch of science, and still needs further approvals and knowledge (National Science Foundation, 2000). The Scientific Dissemination Group (SDG) “La Spezia Gulf of Science” – made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy) - has a decadal experience in initiatives aimed at people and groups of people of all ages, who are keen on science or who can be guided in any case to take an interest in scientific matters (Locritani et al., 2015). Amongst the SDG activities, the tight relationship with the Historical Oceanography Society, the Italian Navy and the Naval Technical Museum (that collects a rich heritage of civilization, technology and culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past.PublishedVienna1TM. Formazion

    Simulating super earth atmospheres in the laboratory

    No full text
    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project 'Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures
    corecore