14 research outputs found

    Exploring the C^N^C theme: Synthesis and biological properties of tridentate cyclometalated gold(III) complexes

    Get PDF
    A family of cyclometalated Au(III) complexes featuring a tridentate CNC scaffold has been synthesized and characterized. Microwave assisted synthesis of the ligands has also been exploited and optimized. The biological properties of the thus formed compounds have been studied in cancer cells and demonstrate generally moderate antiproliferative effects. Initial mechanistic insights have also been gained on the gold complex [Au(CNC)(GluS)] (3), and support the idea that the thioredoxin system may be a target for this family of compounds together with other relevant intracellular thiol-containing molecules. (C) 2017 Elsevier Ltd. All rights reserved

    Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the keap1/nrf2 pathway

    Get PDF
    Bioactive peptides are a group of molecules with health beneficial properties, deriving from food matrices. They are protein fragments consisting of 2–20 amino acids that can be released by microbial fermentation, food processing and gastrointestinal digestion. Once hydrolyzed from their native proteins, they can have different functions including antioxidant activity, which is important for cell protection by oxidant agents. In this work, fermented soy products were digested in vitro in order to improve the release of bioactive peptides. These were extracted, purified and analyzed in vitro and in a cellular model to assess their antioxidant activity. Peptide sequences were identified by LC-MS/MS analysis and a molecular docking approach was used to predict their ability to interact with Keap1, one of the key proteins of the Keap1/Nrf2 pathway, the major system involved in redox regulation. Peptides showing a high score of interaction were selected and tested for their antioxidant properties in a cellular environment using the Caco-2 cell line and examined for their capability to defend cells against oxidative stress. Our results indicate that several of the selected peptides were indeed able to activate the Keap1/Nrf2 pathway with the consequent overexpression of antioxidant and phase II enzymes

    Toward anticancer gold-based compounds targeting PARP-1: A new case study

    Get PDF
    A new gold(III) complex bearing a 2-((2,20-bipyridin)-5-yl)-1Hbenzimidazol- 4-carboxamide ligand has been synthesized and characterized for its biological properties in vitro. In addition to showing promising antiproliferative effects against human cancer cells, the compound potently and selectively inhibits the zinc finger protein PARP-1, with respect to the seleno-enzyme thioredoxin reductase. The results hold promise for the design of novel gold-based anticancer agents disrupting PARP-1 function and to be used in combination therapies

    CCDC 1529429: Experimental Crystal Structure Determination

    No full text
    Related Article: Sophie Jürgens, Valeria Scalcon, Natalia Estrada-Ortiz, Alessandra Folda, Federica Tonolo, Christian Jandl, Duncan L. Browne, Maria Pia Rigobello, Fritz E. Kühn, Angela Casini|2017|Bioorg.Med.Chem.|25|5452|doi:10.1016/j.bmc.2017.08.001,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

    Characterization of Hydrophilic Gold(I) N-Heterocyclic Carbene (NHC) Complexes as Potent TrxR Inhibitors Using Biochemical and Mass Spectrometric Approaches

    No full text
    We report here on the synthesis of a series of mono- and dinuclear gold(I) complexes exhibiting sulfonated bis(NHC) ligands and novel hydroxylated mono(NHC) Au(I) compounds, which were also examined for their biological activities. Initial cell viability assays show strong antiproliferative activities of the hydroxylated mono(NHC) gold compounds (8 > 9 > 10) against 2008 human ovarian cancer cells even after 1 h incubation. In order to gain insight into the mechanism of biological action of the gold compounds, their effect on the pivotal cellular target seleno-enzyme thioredoxin reductase (TrxR), involved in the maintenance of intracellular redox balance, was investigated in depth. The compounds' inhibitory effects on TrxR and glutathione reductase (GR) were studied comparatively, using either the pure proteins or cancer cell extracts. The results show a strong and selective inhibitory effect of TrxR, specifically for the hydroxyl-functionalized NHC gold(I) complexes (8-10). Valuable information on the gold compounds' molecular reactivity with TrxR was gained using the BIAM (biotin-conjugated iodoacetamide) assay and performing competition experiments by mass spectrometry (MS). In good agreement, both techniques suggest the binding affinity of the mono(NHC) Au(I) complexes toward selenols and thiols. Notably, for the first time, bis-carbene formation from mono-carbenes in buffered solution could be observed by MS, which may provide new insights into the speciation mechanisms of bioactive Au(I) NHC complexes. Furthermore, the compounds' interactions with another relevant in cellulo target, namely telomeric G-quadruplex DNA - a higher-order DNA structure playing key roles in telomere function - was investigated by means of FRET melting assays. The lack of interactions with this type of nucleic acid secondary structure support the idea of selective targeting of the hydrophilic Au(I) NHC compounds toward proteins such as TrxR

    Characterization of Hydrophilic Gold(I) N-Heterocyclic Carbene (NHC) Complexes as Potent TrxR Inhibitors Using Biochemical and Mass Spectrometric Approaches

    Get PDF
    We report here on the synthesis of a series of mono- and dinuclear gold(I) complexes exhibiting sulfonated bis(NHC) ligands and novel hydroxylated mono(NHC) Au(I) compounds, which were also examined for their biological activities. Initial cell viability assays show strong antiproliferative activities of the hydroxylated mono(NHC) gold compounds (8 > 9 > 10) against 2008 human ovarian cancer cells even after 1 h incubation. In order to gain insight into the mechanism of biological action of the gold compounds, their effect on the pivotal cellular target seleno-enzyme thioredoxin reductase (TrxR), involved in the maintenance of intracellular redox balance, was investigated in depth. The compounds' inhibitory effects on TrxR and glutathione reductase (GR) were studied comparatively, using either the pure proteins or cancer cell extracts. The results show a strong and selective inhibitory effect of TrxR, specifically for the hydroxyl-functionalized NHC gold(I) complexes (8-10). Valuable information on the gold compounds' molecular reactivity with TrxR was gained using the BIAM (biotin-conjugated iodoacetamide) assay and performing competition experiments by mass spectrometry (MS). In good agreement, both techniques suggest the binding affinity of the mono(NHC) Au(I) complexes toward selenols and thiols. Notably, for the first time, bis-carbene formation from mono-carbenes in buffered solution could be observed by MS, which may provide new insights into the speciation mechanisms of bioactive Au(I) NHC complexes. Furthermore, the compounds' interactions with another relevant in cellulo target, namely telomeric G-quadruplex DNA-a higher-order DNA structure playing key roles in telomere function-was investigated by means of FRET melting assays. The lack of interactions with this type of nucleic acid secondary structure support the idea of selective targeting of the hydrophilic Au(I) NHC compounds toward proteins such as TrxR
    corecore