195 research outputs found
3D human action recognition in multiple view scenarios
This paper presents a novel view-independent
approach to the recognition of human gestures of several
people in low resolution sequences from multiple calibrated
cameras. In contraposition with other multi-ocular gesture
recognition systems based on generating a classification on
a fusion of features coming from different views, our system
performs a data fusion (3D representation of the scene) and
then a feature extraction and classification. Motion descriptors
introduced by Bobick et al. for 2D data are extended
to 3D and a set of features based on 3D invariant statistical
moments are computed. Finally, a Bayesian classifier is employed
to perform recognition over a small set of actions. Results
are provided showing the effectiveness of the proposed
algorithm in a SmartRoom scenario.Peer ReviewedPostprint (published version
Head Motion Analysis and Synthesis over Different Tasks
Abstract. It is known that subjects vary in their head movements. This paper presents an analysis of this variety over different tasks and speakers and their impact on head motion synthesis. Measured head and articulatory movements acquired by an ElectroMagnetic Articulograph (EMA) synchronously recorded with audio was used. Data set of speech of 12 people recorded on different tasks confirms that the head motion variate over tasks and speakers. Experimental results confirmed that the proposed models were capable of learning and synthesising task-dependent head motions from speech. Subjective evaluation of synthesised head motion using task models shows that trained models on the matched task is better than mismatched one and free speech data provide models that predict preferred motion by the participants compared to read speech data
Visualization and Analysis of 3D Microscopic Images
In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain
Current findings for recurring mutations in acute myeloid leukemia
The development of acute myeloid leukemia (AML) is a multistep process that requires at least two genetic abnormalities for the development of the disease. The identification of genetic mutations in AML has greatly advanced our understanding of leukemogenesis. Recently, the use of novel technologies, such as massively parallel DNA sequencing or high-resolution single-nucleotide polymorphism arrays, has allowed the identification of several novel recurrent gene mutations in AML. The aim of this review is to summarize the current findings for the identification of these gene mutations (Dnmt, TET2, IDH1/2, NPM1, ASXL1, etc.), most of which are frequently found in cytogenetically normal AML. The cooperative interactions of these molecular aberrations and their interactions with class I/II mutations are presented. The prognostic and predictive significances of these aberrations are also reviewed
Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1
Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17% these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation
- …