3,279 research outputs found

    A Perturbative Realization of Miransky Scaling

    Get PDF
    Near conformal dynamics is employed in different extensions of the standard model of particle interactions as well as in cosmology. Many of its interesting properties are either conjectured or determined using model computations. We introduce a relevant four dimensional gauge theory template allowing us to investigate such dynamics perturbatively. The gauge theory we consider is quantum chromodynamics with the addition of a meson-like scalar degree of freedom as well as an adjoint Weyl fermion. At the two-loop level, and in the Veneziano limit, we firmly establish the existence of several fixed points of which one is all directions stable in the infrared. An interesting feature of the model is that this fixed point is lost, within the perturbatively trustable regime, by merging with another fixed point when varying the number of quark flavors. We show the emergence of the Miransky scaling and determine its properties. We are also able to determine the walking region of the theory which turns out to be, at large number of colors, about 12% of the conformal window. Furthermore, we determine highly relevant quantities for near conformal dynamics such as the anomalous dimension of the fermion masses.Comment: 17 pages, 8 figure

    Confinement and Chiral Symmetry

    Full text link
    We illustrate why color deconfines when chiral symmetry is restored in gauge theories with quarks in the fundamental representation, and while these transitions do not need to coincide when quarks are in the adjoint representation, entanglement between them is still present.Comment: 4 pages, 1 figure, proceedings of Quark Matter 200

    Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    Full text link
    We study technicolor models in which all of the technifermions are color-singlets, focusing on the case in these fermions transform according to the fundamental representation of the technicolor gauge group. Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing these technicolor sectors.Comment: 17 pages, latex, 2 figure

    Gravitational Techniwaves

    Full text link
    We investigate the production and possible detection of gravitational waves stemming from the electroweak phase transition in the early universe in models of minimal walking technicolor. In particular we discuss the two possible scenarios in which one has only one electroweak phase transition and the case in which the technicolor dynamics allows for multiple phase transitions.Comment: 30 pages, 5 figures. v2: minor changes, references added, title changed in journa

    Logarithmic correction in the deformed AdS5{\rm AdS}_5 model to produce the heavy quark potential and QCD beta function

    Full text link
    We stude the \textit{holographic} QCD model which contains a quadratic term σz2 -\sigma z^2 and a logarithmic term c0log[(zIRz)/zIR]-c_0\log[(z_{IR}-z)/z_{IR}] with an explicit infrared cut-off zIRz_{IR} in the deformed AdS5{\rm AdS}_5 warp factor. We investigate the heavy quark potential for three cases, i.e, with only quadratic correction, with both quadratic and logarithmic corrections and with only logarithmic correction. We solve the dilaton field and dilation potential from the Einstein equation, and investigate the corresponding beta function in the G{\"u}rsoy -Kiritsis-Nitti (GKN) framework. Our studies show that in the case with only quadratic correction, a negative σ\sigma or the Andreev-Zakharov model is favored to fit the heavy quark potential and to produce the QCD beta-function at 2-loop level, however, the dilaton potential is unbounded in infrared regime. One interesting observing for the case of positive σ\sigma, or the soft-wall AdS5{\rm AdS}_5 model is that the corresponding beta-function exists an infrared fixed point. In the case with only logarithmic correction, the heavy quark Cornell potential can be fitted very well, the corresponding beta-function agrees with the QCD beta-function at 2-loop level reasonably well, and the dilaton potential is bounded from below in infrared. At the end, we propose a more compact model which has only logarithmic correction in the deformed warp factor and has less free parameters.Comment: 24 pages, 16 figure

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure

    Technicolor and Beyond: Unification in Theory Space

    Get PDF
    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enhancement of the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the top mass. Precision data constraints are reviewed focussing on the latest crucial observation that the S-parameter can be computed exactly near the upper end of the conformal window (Conformal S-parameter) with relevant consequences on the selection of nature's next strong force. We will then introduce the Minimal Walking Technicolor (MWT) models. In the second part of this review we consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N=4 SYM.Comment: Extended version of the PASCOS10 proceedings for the Plenary Tal

    Extending the Veneziano-Yankielowicz Effective Theory

    Full text link
    We extend the Veneziano Yankielowicz (VY) effective theory in order to account for ordinary glueball states. We propose a new form of the superpotential including a chiral superfield for the glueball degrees of freedom. When integrating it ``out'' we obtain the VY superpotential while the N vacua of the theory naturally emerge. This fact has a counterpart in the Dijkgraaf and Vafa geometric approach. We suggest a link of the new field with the underlying degrees of freedom which allows us to integrate it ``in'' the VY theory. We finally break supersymmetry by adding a gluino mass and show that the Kahler independent part of the ``potential'' has the same form of the ordinary Yang-Mills glueball effective potential.Comment: LaTeX, 20 page

    Comment on ``Confirmation of the Sigma Meson''

    Get PDF
    We comment on the recent paper by N.A. Tornqvist and M. Roos published in Phys. Rev. Lett. 76, 1575 (1996).Comment: 3 pages (LaTeX), 1 PostScript Figur

    Study of an Alternate Mechanism for the Origin of Fermion Generations

    Full text link
    In usual extended technicolor (ETC) theories based on the group SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}, the quarks of charge 2/3 and -1/3 and the charged leptons of all generations arise from ETC fermion multiplets transforming according to the fundamental representation. Here we investigate a different idea for the origin of SM fermion generations, in which quarks and charged leptons of different generations arise from ETC fermions transforming according to different representations of SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}. Although this mechanism would have the potential, {\it a priori}, to allow a reduction in the value of NETCN_{ETC} relative to conventional ETC models, we show that, at least in simple models, it is excluded by the fact that the technicolor sector is not asymptotically free or by the appearance of fermions with exotic quantum numbers which are not observed.Comment: 6 pages, late
    corecore