741 research outputs found

    Collapse of the Cooper pair phase coherence length at a superconductor to insulator transition

    Get PDF
    We present investigations of the superconductor to insulator transition (SIT) of uniform a-Bi films using a technique sensitive to Cooper pair phase coherence. The films are perforated with a nanohoneycomb array of holes to form a multiply connected geometry and subjected to a perpendicular magnetic field. Film magnetoresistances on the superconducting side of the SIT oscillate with a period dictated by the superconducting flux quantum and the areal hole density. The oscillations disappear close to the SIT critical point to leave a monotonically rising magnetoresistance that persists in the insulating phase. These observations indicate that the Cooper pair phase coherence length, which is infinite in the superconducting phase, collapses to a value less than the interhole spacing at this SIT. This behavior is inconsistent with the gradual reduction of the phase coherence length expected for a bosonic, phase fluctuation driven SIT. This result starkly contrasts with previous observations of oscillations persisting in the insulating phase of other films implying that there must be at least two distinct classes of disorder tuned SITs

    Cooper pair insulator in amorphous films induced by nanometer-scale thickness variations

    Get PDF
    Unusual transport properties of superconducting (SC) materials, such as the under doped cuprates, low dimensional superconductors in strong magnetic fields, and insulating films near the Insulator Superconductor Transition (IST), have been attributed to the formation of inhomogeneous phases. Difficulty correlating the behaviors with observations of the inhomogeneities make these connections uncertain. Of primary interest here are proposals that insulating films near the IST, which show an activated resistance and giant positive magnetoresistance, contain islands of Cooper Pairs (CPs). Here we present evidence that these types of inhomogeneities are essential to such an insulating phase in amorphous Bi (a-Bi) films deposited on substrates patterned with nanometer-sized holes. The patterning induces film thickness variations, and corresponding coupling constant variations, that transform the composition of the insulator from localized electrons to CPs. Analyses near the thickness-tuned ISTs of films on nine different substrates show that weak links between SC islands dominate the transport. In particular, the ISTs all occur when the link resistance approaches the resistance quantum for pairs. These observations lead to a detailed picture of CPs localized by spatial variations of the superconducting coupling constant.Comment: 4 pages, 3 figures, 1 supplemental page with 1 supplemental figur

    Coulomb Zero-Bias Anomaly: A Semiclassical Calculation

    Full text link
    Effective action is proposed for the problem of Coulomb blocking of tunneling. The approach is well suited to deal with the ``strong coupling'' situation near zero bias, where perturbation theory diverges. By a semiclassical treatment, we reduce the physics to that of electrodynamics in imaginary time, and express the anomaly through exact conductivity of the system σ(ω,q)\sigma(\omega, q) and exact interaction. For the diffusive anomaly, we compare the result with the perturbation theory of Altshuler, Aronov, and Lee. For the metal-insulator transition we derive exact relation of the anomaly and critical exponent of conductivity.Comment: 9 pages, RevTeX 3.

    Driven diffusive system with non-local perturbations

    Full text link
    We investigate the impact of non-local perturbations on driven diffusive systems. Two different problems are considered here. In one case, we introduce a non-local particle conservation along the direction of the drive and in another case, we incorporate a long-range temporal correlation in the noise present in the equation of motion. The effect of these perturbations on the anisotropy exponent or on the scaling of the two-point correlation function is studied using renormalization group analysis.Comment: 11 pages, 2 figure

    Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva.

    Get PDF
    We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species.JSL was supported by the National Science Foundation under Grant DEB-0743542. AEF is supported by the Wellcome Trust (Grant no. [106207]) and the European Research Council (ERC) under the European Union׳s Horizon 2020 research and innovation programme (Grant agreement no. [646891]).This is the final version of the article. It first appeared from Elsevier at https://doi.org/10.1016/j.virol.2016.06.014

    Quantum superconductor-metal transition

    Full text link
    We consider a system of superconducting grains embedded in a normal metal. At zero temperature this system exhibits a quantum superconductor-normal metal phase transition. This transition can take place at arbitrarily large conductance of the normal metal.Comment: 13 pages, 1 figure include

    The Field-Tuned Superconductor-Insulator Transition with and without Current Bias

    Full text link
    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product vz = 1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set of exponents suggests that the field-tuned transitions with and without dc bias currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change

    Electron Glass in Ultrathin Granular Al Films at Low Temperatures

    Full text link
    Quench-condensed granular Al films, with normal-state sheet resistance close to 10 kΩ/\Omega/\Box, display strong hysteresis and ultraslow, non-exponential relaxation in the resistance when temperature is varied below 300 mK. The hysteresis is nonlinear and can be suppressed by a dc bias voltage. The relaxation time does not obey the Arrhenius form, indicating the existence of a broad distribution of low energy barriers. Furthermore, large resistance fluctuations, having a 1/f-type power spectrum with a low-frequency cut-off, are observed at low temperatures. With decreasing temperature, the amplitude of the fluctuation increases and the cut-off frequency decreases. These observations combine to provide a coherent picture that there exists a new glassy electron state in ultrathin granular Al films, with a growing correlation length at low temperatures.Comment: RevTeX 3.1, 4 pages, 4 figures (EPS files) (Minor Additions

    Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films

    Full text link
    In this paper we report the first experimental measurement of the infrared conductivity of ultra-thin quenched-condensed Pb films. For dc sheet resistances such that ωτ1\omega \tau \ll 1 the ac conductance increases with frequency but is in disagreement with the predictions of weak localization. We attribute this behavior to the effects of an inhomogeneous granular structure of these films, which is manifested at the very small probing scale of infrared measurements. Our data are consistent with predictions of two-dimensional percolation theory.Comment: Submitted to Physical Review Letter

    Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model

    Full text link
    We study the effects of disorder on long-range antiferromagnetic correlations in the half-filled, two dimensional, repulsive Hubbard model at T=0. A mean field approach is first employed to gain a qualitative picture of the physics and to guide our choice for a trial wave function in a constrained path quantum Monte Carlo (CPQMC) method that allows for a more accurate treatment of correlations. Within the mean field calculation, we observe both Anderson and Mott insulating antiferromagnetic phases. There are transitions to a paramagnet only for relatively weak coupling, U < 2t in the case of bond disorder, and U < 4t in the case of on-site disorder. Using ground-state CPQMC we demonstrate that this mean field approach significantly overestimates magnetic order. For U=4t, we find a critical bond disorder of Vc = (1.6 +- 0.4)t even though within mean field theory no paramagnetic phase is found for this value of the interaction. In the site disordered case, we find a critical disorder of Vc = (5.0 +- 0.5)t at U=4t.Comment: Revtex, 13 pages, 15 figures. Minor changes to title and abstract, discussion and references added, figures 5, 6, 8, 9 replaced with easier to read version
    corecore