16 research outputs found

    Low-temperature regimes and finite-size scaling in a quantum spherical model

    Full text link
    A dd--dimensional quantum model in the spherical approximation confined to a general geometry of the form Ld−d′×∞d′×LτzL^{d-d^{\prime}} \times\infty^{d^{\prime}}\times L_{\tau}^{z} (LL--linear space size and LτL_{\tau}--temporal size) and subjected to periodic boundary conditions is considered. Because of its close relation with the quantum rotors model it can be regarded as an effective model for studying the low-temperature behavior of the quantum Heisenberg antiferromagnets. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phenomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<31<d<3 and 0≤d′≤d0\leq d^{\prime}\leq d a detailed analysis, in terms of the special functions of classical mathematics, for the free energy, the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.Comment: 36 pages, Revtex+epsf, 3 figures included. Some minor corrections are don

    Theory of a spherical quantum rotors model: low--temperature regime and finite-size scaling

    Full text link
    The quantum rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a dd-dimensional model in the spherical approximation confined to a general geometry of the form Ld−d′×∞d′×LτzL^{d-d'}\times\infty^{d'}\times L_{\tau}^{z} ( LL-linear space size and LτL_{\tau}-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phenomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<31<d<3 and 0≤d′≤d0\leq d'\leq d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.Comment: 33pages, revtex+epsf, 3ps figures included submitted to PR

    Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test

    Get PDF
    The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test
    corecore