13,511 research outputs found

    Semantic modelling of learning objects and instruction

    Get PDF
    We introduce an ontology-based semantic modelling framework that addresses subject domain modelling, instruction modelling, and interoperability aspects in the development of complex reusable learning objects. Ontologies are knowledge representation frameworks, ideally suited to support knowledge-based modelling of these learning objects. We illustrate the benefits of semantic modelling for learning object assemblies within the context of standards such as SCORM Sequencing and Navigation and Learning Object Metadata

    The effect of external forces on discrete motion within holographic optical tweezers

    Get PDF
    Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers

    Finite-size effects in the dynamics of few bosons in a ring potential

    Full text link
    We study the temporal evolution of a small number NN of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schr\"odinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a "decay" of the density variation, and the third is associated with periodic "collapses" and "revivals" of the density variations, with a factor of N\sqrt N separating each of them. The last two timescales tend to infinity in the appropriate limit of large NN, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.Comment: To appear in Journal of Physics

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    Ecosystem properties and principles of living systems as foundation for sustainable agriculture – Critical reviews of environmental assessment tools, key findings and questions from a course process

    Get PDF
    With increasing demands on limited resources worldwide, there is a growing interest in sustainable patterns of utilisation and production. Ecological agriculture is a response to these concerns. To assess progress and compliance, standard and comprehensive measures of resource requirements, impacts and agro-ecological health are needed. Assessment tools should also be rapid, standardized, userfriendly, meaningful to public policy and applicable to management. Fully considering these requirements confounds the development of integrated methods. Currently, there are many methodologies for monitoring performance, each with its own foundations, assumptions, goals, and outcomes, dependent upon agency agenda or academic orientation. Clearly, a concept of sustainability must address biophysical, ecological, economic, and sociocultural foundations. Assessment indicators and criteria, however, are generally limited, lacking integration, and at times in conflict with one another. A result is that certification criteria, indicators, and assessment methods are not based on a consistent, underlying conceptual framework and often lack a management focus. Ecosystem properties and principles of living systems, including self-organisation, renewal, embeddedness, emergence and commensurate response provide foundation for sustainability assessments and may be appropriate focal points for critical thinking in an evaluation of current methods and standards. A systems framework may also help facilitate a comprehensive approach and promote a context for meaningful discourse. Without holistic accounts, sustainable progress remains an illdefined concept and an elusive goal. Our intent, in the work with this report, was to use systems ecology as a pedagogic basis for learning and discussion to: - Articulate general and common characteristics of living systems. - Identify principles, properties and patterns inherent in natural ecosystems. - Use these findings as foci in a dialogue about attributes of sustainability to: a. develop a model for communicating scientific rationale. b. critically evaluate environmental assessment tools for application in land-use. c. propose appropriate criteria for a comprehensive assessment and expanded definition of ecological land use

    Microfabricated high-finesse optical cavity with open access and small volume

    No full text
    We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network

    Atom detection and photon production in a scalable, open, optical microcavity

    Full text link
    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps towards building an optical microcavity network on an atom chip for applications in quantum information processing.Comment: 4 pages, 4 figures. A typographical error in the published paper has been corrected (equation of the corrected normalized variance, page 3, 2nd paragraph

    Cold atoms in videotape micro-traps

    Full text link
    We describe an array of microscopic atom traps formed by a pattern of magnetisation on a piece of videotape. We describe the way in which cold atoms are loaded into one of these micro-traps and how the trapped atom cloud is used to explore the properties of the trap. Evaporative cooling in the micro-trap down to a temperature of 1 microkelvin allows us to probe the smoothness of the trapping potential and reveals some inhomogeneity produced by the magnetic film. We discuss future prospects for atom chips based on microscopic permanent-magnet structures.Comment: Submitted for EPJD topical issue "Atom chips: manipulating atoms and molecules with microfabricated structures

    A three-dimensional electrostatic actuator with a locking mechanism for a new generation of atom chips

    No full text
    A micromachined three-dimensional electrostatic actuator that is optimized for aligning and tuning optical microcavities on atom chips is presented. The design of the 3D actuator is outlined in detail, and its characteristics are verified by analytical calculations and finite element modelling. Furthermore, the fabrication process of the actuation device is described and preliminary fabrication results are shown. The actuation in the chip plane which is used for mirror positioning has a working envelope of 17.5 ?m. The design incorporates a unique locking mechanism which allows the out-of-plane actuation that is used for cavity tuning to be carried out once the in-plane actuation is completed. A maximum translation of 7 ?m can be achieved in the out-of-plane direction
    corecore