16 research outputs found

    Superconductivity in novel Ge-based skutterudites: {Sr,Ba}Pt_4Ge_{12}

    Full text link
    Combining experiments and ab initio models we report on SrPt4Ge12\rm SrPt_4Ge_{12} and BaPt4Ge12\rm BaPt_4Ge_{12} as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge-atoms. Below Tc=5.35T_c=5.35 K, and 5.10 K for BaPt4Ge12\rm BaPt_4Ge_{12} and SrPt4Ge12\rm SrPt_4Ge_{12}, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-pp states dominate the electronic structure at the Fermi energy.Comment: 4 pages, 4 figures, accepted for publication in PR

    Thermoelectric properties of Zn doped Cu2SnSe3

    No full text
    Zn doped ternary compounds Cu2ZnxSn1-xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1-xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/1 dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZF = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. (C) 2014 Elsevier B.V. All rights reserved

    Thermoelectric properties of Fe(0.2)Co(3.8)Sbi(12-x)Te(x) skutterudites

    No full text
    Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Thermoelectric properties of Bi-added Co4Sb12 skutterudites

    No full text
    Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12

    Ternary clathrates Ba-Zn-Ge: phase equilibria, crystal chemistry and physical properties

    No full text
    The formation, phase relations, crystal chemistry and physical properties were investigated for the solid solution Ba8ZnxGe46−x−yy deriving from binary clathrate Ba8Ge433 with a solubility limit of 8 Zn atoms per formula unit at 800 ◦C ( is a vacancy). Single-crystal x-ray data throughout the homogeneity region confirm the clathrate type I structure with cubic primitive space group type Pm¯3n. Temperature-dependent x-ray spectra as well as heat capacity define a lowlying, almost localized, phonon branch, whereas neutron spectroscopy indicates a phonon mode with significant correlations. The transport properties are strongly determined by the Ge/Zn ratio in the framework of the structure. Increasing Zn content drives the system towards a metal-to-insulator transition; for example, Ba8Zn2.1Ge41.52.4 shows metallic behaviour at low temperatures, whilst at high temperatures semiconducting features become obvious. A model based on a gap of the electronic density of states slightly above the Fermi energy was able to explain the temperature dependences of the transport properties. The thermal conductivity exhibits a pronounced low-temperature maximum, dominated by the lattice contribution, while at higher temperatures the electronic part gains weight. Zn-rich compositions reveal attractive Seebeck coefficients approaching −180 μV K−1 at 700 K
    corecore