553 research outputs found

    Ground state properties and dynamics of the bilayer t-J model

    Full text link
    We present an exact diagonalization study of bilayer clusters of t-J model. Our results indicate a crossover between two markedly different regimes which occurs when the ratio J_perp/J between inter-layer and intra-layer exchange constants increases: for small J_perp/J the data suggest the development of 3D antiferromagnetic correlations without appreciable degradation of the intra-layer spin order and the d_(x2-y2) hole pairs within the planes persist. For larger values of J_perp/J local singlets along the inter-layer bonds dominate, leading to an almost complete suppression of the intra-layer spin correlation and the breaking of the intra-layer pairs. The ground state with two holes in this regime has s-like symmetry. The data suggest that the crossover may occur for values of J_perp/J as small as 0.2. We present data for static spin correlations, spin gap, and electron momentum distribution and spectral function of the `inter-layer RVB state' realized for large J_perp/J. The latter deviates from the single layer ground state, making it an implausible candidate for modelling high-temperature superconductors.Comment: Revtex-file, 6 PRB pages, figures appended as uu-encoded postscript. Hardcopies of figures (or the entire manuscript) can be obtained by e-mailing to: [email protected]

    An upper limit on the evolution of carbon monoxide from Comet Kohoutek

    Get PDF
    The rate of evolution of CO from Comet Kohoutex is presented. The observations were made approximately two months after perihelion. The rate of evolution of CO at that time was apparently less than that of CH3CN observed before perihelion

    The Superconducting Instabilities of the non half-filled Hubbard Model in Two Dimensions

    Full text link
    The problem of weakly correlated electrons on a square lattice is formulated in terms of one-loop renormalization group. Starting from the action for the entire Brillouin zone (and not with a low-energy effective action) we reduce successively the cutoff Λ\Lambda about the Fermi surface and follow the renormalization of the coupling UU as a function of three energy-momenta. We calculate the intrinsic scale TcoT_{co} where the renormalization group flow crosses over from the regime (Λ>Tco\Lambda > T_{co}) where the electron-electron (e-e) and electron-hole (e-h) terms are equally important to the regime (Λ<Tco\Lambda < T_{co}) where only the e-e term plays a role. In the low energy regime only the pairing interaction VV is marginally relevant, containing contributions from all renormalization group steps of the regime Λ>Tco\Lambda > T_{co}. After diagonalization of VΛ=TcoV_{\Lambda =T_{co}}, we identify its most attractive eigenvalue λmin\lambda _{\min}. At low filling, λmin\lambda _{\min} corresponds to the B2B_2 representation (dxyd_{xy} symmetry), while near half filling the strongest attraction occurs in the B1B_1 representation (dx2y2d_{x^2-y^2} symmetry). In the direction of the van Hove singularities, the order parameter shows peaks with increasing strength as one approaches half filling. Using the form of pairing and the structure of the renormalization group equations in the low energy regime, we give our interpretation of ARPES experiments trying to determine the symmetry of the order parameter in the Bi2212 high-TcT_{c} compound.Comment: 24 pages (RevTeX) + 11 figures (the tex file appeared incomplete

    Intrinsic Josephson Effect in the Layered Two-dimensional t-J Model

    Full text link
    The intrinsic Josephson effect in the high-Tc superconductors is studied using the layered two-dimensional t-J model. The d.c.Josephson current which flows perpendicular to the t-J planes is obtained within the mean-field approximation and the Gutzwiller approximation. We find that the Josephson current has its maximum near the optimum doping region as a function of the doping rate.Comment: 4 pages, 3 figure

    Effect of spatial variations of superconducting gap on suppression of the transition temperature by impurities

    Full text link
    We calculate correction to the critical temperature of a dirty superconductor, which results from the local variations of the gap function near impurity sites. This correction is of the order of T_c/E_F and becomes important for short-coherence length superconductors. It generally reduces a pair-breaking effect. In s-wave superconductors small amounts of nonmagnetic impurities can increase the transition temperature.Comment: 5 pages, ReVTE

    Gap Renormalization in Dirty Anisotropic Superconductors: Implications for the Order Parameter of the Cuprates

    Full text link
    We contrast the effects of non-magnetic impurities on the properties of superconductors having a \dw\ order parameter, and a highly anisotropic s-wave (ASW) gap with the same nodal structure. The non-vanishing, impurity induced, off-diagonal self-energy in the ASW state is shown to gap out the low energy excitations present in the clean system, leading to a qualitatively different impurity response of the single particle density of states compared to the \dw\ state. We discuss how this behaviour can be employed to distinguish one state from the other by an analysis of high-resolution angle-resolved photoemission spectra.Comment: 12 pages, uuencoded Postscrip

    Josephson tunneling in high-TcT_c superconductors

    Full text link
    This article describes the Josephson tunneling from time-reversal symmetry-breaking states and compares it with that from time-reversal invariant states for both twinned and untwinned crystals and for both cc-axis and basal-plane currents, in a model for orthorhombic YBCO. A macroscopic invariance group describing the superconducting state of a twinned crystal is introduced and shown to provide a useful framework for the discussion of the results for twinned crystals. In addition, a ring geometry, which allows ss-wave and dx2y2d_{x^2-y^2}-wave superconductivity in a tetragonal superconductor to be distinguished on the basis of symmetry arguments only, is proposed and analyzed. Finally, an appendix gives details of the experimental Josephson tunneling evidence for a superconducting state of orthorhombic ux2+vy2ux^2+vy^2 symmetry in YBCO.Comment: Latex File, 18 pages, 6 Postscript figures, submitted to Phys. Rev.

    Quasiparticle transport and localization in high-T_c superconductors

    Full text link
    We present a theory of the effects of impurity scattering in d_{x^2-y^2} superconductors and their quantum disordered counterparts, based on a non-linear sigma model formulation. We show the existence, in a quasi-two-dimensional system, of a novel spin-metal phase with a non-zero spin diffusion constant at zero temperature. With decreasing inter-layer coupling, the system undergoes a quantum phase transition (in a new universality class) to a localized spin-insulator. Experimental implications for spin and thermal transport in the high-temperature superconductors are discussed.Comment: 4 pages, 1 figur

    Induction of non-d-wave order-parameter components by currents in d-wave superconductors

    Full text link
    It is shown, within the framework of the Ginzburg-Landau theory for a superconductor with d_{x^2-y^2} symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of order-parameter components of distinct symmetry. The induction of s-wave and d_{xy(x^2-y^2)-wave components are considered in detail. It is shown that in both cases the order parameter remains gapless; however, the structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the magnitudes of these modifications differ in their dependence on the (a-b plane) current direction. The magnitude of the induced s-wave component is estimated using the results of the calculations of Ren et al. [Phys. Rev. Lett. 74, 3680 (1995)], which are based on a microscopic approach.Comment: 15 pages, includes 2 figures. To appear in Phys. Rev.

    Tilt Grain-Boundary Effects in S- and D-Wave Superconductors

    Full text link
    We calculate the s- and d-wave superconductor order parameter in the vicinity of a tilt grain boundary. We do this self-consistently within the Bogoliubov de Gennes equations, using a realistic microscopic model of the grain boundary. We present the first self-consistent calculations of supercurrent flows in such boundaries, obtaining the current-phase characteristics of grain boundaries in both s-wave and d-wave superconductors
    corecore