54,771 research outputs found

    Suitability of commercially available laboratory cryogenic refrigerators to support shipboard electro-optical systems in the 10 - 77 Kelvin region

    Get PDF
    The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon

    Extensions of Lieb's concavity theorem

    Full text link
    The operator function (A,B)\to\tr f(A,B)(K^*)K, defined on pairs of bounded self-adjoint operators in the domain of a function f of two real variables, is convex for every Hilbert Schmidt operator K, if and only if f is operator convex. As a special case we obtain a new proof of Lieb's concavity theorem for the function (A,B)\to\tr A^pK^*B^{q}K, where p and q are non-negative numbers with sum p+q\le 1. In addition, we prove concavity of the operator function (A,B)\to \tr(A(A+\mu_1)^{-1}K^* B(B+\mu_2)^{-1}K) on its natural domain D_2(\mu_1,\mu_2), cf. Definition 4.1Comment: The format of one reference is changed such that CiteBase can identify i

    The Large Footprints of H-Space on Asymptotically Flat Space-Times

    Full text link
    We show that certain structures defined on the complex four dimensional space known as H-Space have considerable relevance for its closely associated asymptotically flat real physical space-time. More specifically for every complex analytic curve on the H-space there is an asymptotically shear-free null geodesic congruence in the physical space-time. There are specific geometric structures that allow this world-line to be chosen in a unique canonical fashion giving it physical meaning and significance.Comment: 7 page

    SU(1,1)SU(1,1) and SU(2)SU(2) Perelomov number coherent states: algebraic approach for general systems

    Full text link
    We study some properties of the SU(1,1)SU(1,1) Perelomov number coherent states. The Schr\"odinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K0K_0 of the su(1,1)su(1,1) Lie algebra. Analogous results for the SU(2)SU(2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator

    Non-linear Poisson-Boltzmann Theory for Swollen Clays

    Full text link
    The non-linear Poisson-Boltzmann equation for a circular, uniformly charged platelet, confined together with co- and counter-ions to a cylindrical cell, is solved semi-analytically by transforming it into an integral equation and solving the latter iteratively. This method proves efficient, robust, and can be readily generalized to other problems based on cell models, treated within non-linear Poisson-like theory. The solution to the PB equation is computed over a wide range of physical conditions, and the resulting osmotic equation of state is shown to be in fair agreement with recent experimental data for Laponite clay suspensions, in the concentrated gel phase.Comment: 13 pages, 4 postscript figure

    Absence of magnetic long range order in Y2_{2}CrSbO7_{7}: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore

    Get PDF
    The consequences of nonmagnetic-ion dilution for the pyrochlore family Y2_{2}(M1−xNxM_{1-x}N_{x})2_{2}O7_{7} (MM = magnetic ion, NN = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2_{2}CrSbO7_{7} (xx = 0.5), in which the magnetic sites (Cr3+^{3+}) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW\Theta_\mathrm{{CW}} = 20.1(6) K, our high-resolution neutron powder diffraction measurements detect no sign of magnetic long range order down to 2 K. In order to understand our observations, we performed numerical simulations to study the bond-disorder introduced by the ionic size mismatch between MM and NN. Based on these simulations, bond-disorder (xbx_{b} ≃\simeq 0.23) percolates well ahead of site-disorder (xsx_{s} ≃\simeq 0.61). This model successfully reproduces the critical region (0.2 < xx < 0.25) for the N\'eel to spin glass phase transition in Zn(Cr1−x_{1-x}Gax_{x})2_{2}O4_{4}, where the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the M/NM/N-sublattice in Y2_{2}(M1−xNxM_{1-x}N_{x})2_{2}O7_{7}, and the rapid drop in magnetically ordered moment in the N\'eel phase [Lee etet alal, Phys. Rev. B 77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder on magnetic frustration, even in ferromagnets
    • …
    corecore