52,707 research outputs found

    Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse

    Full text link
    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ\Gamma has smaller value for such a fluid in cylindrically symmetric than isotropic sphere

    An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks

    Full text link
    {\it Critical slowing down} associated with the iterative solvers close to the critical point often hinders large-scale numerical simulation of fracture using discrete lattice networks. This paper presents a block circlant preconditioner for iterative solvers for the simulation of progressive fracture in disordered, quasi-brittle materials using large discrete lattice networks. The average computational cost of the present alorithm per iteration is O(rslogs)+delopsO(rs log s) + delops, where the stiffness matrix A{\bf A} is partioned into rr-by-rr blocks such that each block is an ss-by-ss matrix, and delopsdelops represents the operational count associated with solving a block-diagonal matrix with rr-by-rr dense matrix blocks. This algorithm using the block circulant preconditioner is faster than the Fourier accelerated preconditioned conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing down} that is especially severe close to the critical point. Numerical results using random resistor networks substantiate the efficiency of the present algorithm.Comment: 16 pages including 2 figure

    Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    Get PDF
    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease

    Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase

    Full text link
    We present results of molecular simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether", including double gyroid, perforated lamella and crystalline bilayer phases. We show that microphase separation of the immiscible tethers and nanospheres causes confinement of the nanoparticles, which promotes local icosahedral packing that stabilizes the gyroid and perforated lamella phases. We present a new metric for determining the local arrangement of particles based on spherical harmonic "fingerprints", which we use to quantify the extent of icosahedral ordering.Comment: 8 pages, 4 figure

    Constraining New Forces in the Casimir Regime Using the Isoelectronic Technique

    Get PDF
    We report the first isoelectronic differential force measurements between a Au-coated probe and two Au-coated films, made out of Au and Ge. These measurements, performed at submicron separations using soft microelectromechanical torsional oscillators, eliminate the need for a detailed understanding of the probe-film Casimir interaction. The observed differential signal is directly converted into limits on the parameters α\alpha and λ\lambda which characterize Yukawa-like deviations from Newtonian gravity. We find \alpha \lsim 10^{12} for λ200\lambda \sim 200 nm, an improvement of \sim 10 over previous limits.Comment: 10 pages, 4 figure

    On Some Open Problems in Many-Electron Theory

    Full text link
    Mel Levy and Elliott Lieb are two of the most prominent researchers who have dedicated their efforts to the investigation of fundamental questions in many-electron theory. Their results have not only revolutionized the theoretical approach of the field, but, directly or indirectly, allowed for a quantum jump in the computational treatment of realistic systems as well. For this reason, at the conclusion of our book where the subject is treated across different disciplines, we have asked Mel Levy and Elliott Lieb to provide us with some open problems, which they believe will be a worth challenge for the future also in the perspective of a synergy among the various disciplines.Comment: "Epilogue" chapter in "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View", Volker Bach and Luigi Delle Site Eds. pages 411-416; Book Series: Mathematical Physics Studies, Springer International Publishing Switzerland, 2014. The original title has been modified in order to clarify the subject of the chapter out of the context of the boo
    corecore