169 research outputs found

    Anthropogenic versus fish‐derived nutrient effects on seagrass community structure and function

    Full text link
    Humans are altering nutrient dynamics through myriad pathways globally. Concurrent with the addition of nutrients via municipal, industrial, and agricultural sources, widespread consumer exploitation is changing consumer‐mediated nutrient dynamics drastically. Thus, altered nutrient dynamics can occur through changes in the supply of multiple nutrients, as well as through changes in the sources of these nutrients. Seagrass ecosystems are heavily impacted by human activities, with highly altered nutrient dynamics from multiple causes. We simulate scenarios of altered nutrient supply and ratios, nitrogen:phosphorus (N:P), from two nutrient sources in seagrass ecosystems: anthropogenic fertilizer and fish excretion. In doing so we tested expectations rooted in ecological theory that suggest the importance of resource dynamics for predicting primary producer dynamics. Ecosystem functions were strongly altered by artificial fertilizer (e.g., seagrass growth increased by as much as 140%), whereas plant/algae community structure was most affected by fish‐mediated nutrients or the interaction of both treatments (e.g., evenness increased by ~140% under conditions of low fish nutrients and high anthropogenic nutrients). Interactions between the nutrient sources were found for only two of six response variables, and the ratio of nutrient supply was the best predictor for only one response. These findings show that seagrass structure and function are well predicted by supply of a single nutrient (either N or P). Importantly, no single nutrient best explained the majority of responses—measures of community structure were best explained by the primary limiting nutrient to this system (P), whereas measures of growth and density of the dominant producer in the system were best explained by N. Thus, while our findings support aspects of theoretical expectations, the complexity of producer community responses belies broad generalities, underscoring the need to manage for multiple simultaneous nutrients in these imperiled coastal ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/1/ecy2388_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/2/ecy2388-sup-0003-AppendixS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/3/ecy2388-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/4/ecy2388-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/5/ecy2388-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/6/ecy2388-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/7/ecy2388.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/8/ecy2388-sup-0004-AppendixS4.pd

    Rewiring coral: Anthropogenic nutrients shift diverse coral–symbiont nutrient and carbon interactions toward symbiotic algal dominance

    Full text link
    Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.We provide a long‐term field experiment to test the implications of different nutrient sources, fish excretion and moderate levels of anthropogenic nutrients, for coral health and coral–symbiont interactions. Our study identifies a potentially novel "transition state" whereby despite maintaining high growth rates and creating no apparent negative external effects, anthropogenic nutrient enrichment drives coral–algal interactions to be dominated by the algal symbiont—that is, increased prominence of energy and nutrient flow from the algal symbiont under conditions of Fish + anthropogenic nutrients (NPK) in the figure. We hypothesize that this “rewiring” of the coral–symbiont interactions may render the coral more vulnerable to additional stressors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/2/gcb15230_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/1/gcb15230.pd

    Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes

    Full text link
    Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several stoichiometric models, there is no current implementation that permits its incorporation into a bioenergetics approach to predict ingestion rates. This may lead to biased estimates of elemental fluxes.Here, we introduce a theoretical framework that combines stoichiometry and bioenergetics with explicit consideration of elemental limitations. We examine varying elemental limitations across different trophic groups and life stages through a case study of three trophically distinct reef fishes. Further, we empirically validate our model using an independent database of measured excretion rates.Our model adequately predicts elemental fluxes in the examined species and reveals species‐ and size‐specific limitations of C, N and P. In line with theoretical predictions, we demonstrate that the herbivore Zebrasoma scopas is limited by N and P, and all three fish species are limited by P in early life stages. Further, we show that failing to account for nutrient limitation can result in a greater than twofold underestimation of ingestion rates, which leads to severely biased excretion rates.Our model improved predictions of ingestion, excretion and egestion rates across all life stages, especially for fishes with diets low in N and/or P. Due to its broad applicability, its reliance on many parameters that are well‐defined and widely accessible, and its straightforward implementation via the accompanying r‐package fishflux, our model provides a user‐friendly path towards a better understanding of ecosystem‐wide nutrient cycling in the aquatic biome.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/5/fec13618_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/4/fec13618-sup-0002-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/3/fec13618-sup-0001-Summary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/2/fec13618-sup-0003-AppendixS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/1/fec13618.pd

    New result for the neutron ÎČ\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron ÎČ\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=−0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λ≥gAgV=−1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λ≥gAgV=−1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio

    Search for neutron dark decay: n → χ + eâșe⁻

    Get PDF
    In January, 2018, Fornal and Grinstein proposed that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in two different types of experiments. One of the possible final states discussed includes a single χ along with an eâșe⁻ pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∌ 4π acceptance using a pair of detectors that observe a volume of stored Ultracold Neutrons (UCNs). We use the timing information of coincidence events to select candidate dark sector particle decays by applying a timing calibration and selecting events within a physically-forbidden timing region for conventional n → p + e⁻ + Μ̅_e decays. The summed kinetic energy (E_(eâșe⁻)) from such events is reconstructed and used to set limits, as a function of the χ mass, on the branching fraction for this decay channel

    Final results for the neutron ÎČ-asymmetry parameter A₀ from the UCNA experiment

    Get PDF
    The UCNA experiment was designed to measure the neutron ÎČ-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A₀

    Interplay among critical temperature, hole content, and pressure in the cuprate superconductors

    Full text link
    Within a BCS-type mean-field approach to the extended Hubbard model, a nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered, in good agreement with the celebrated non-monotonic universal behaviour at normal pressure. Evaluation of T_c at higher pressures is then made possible by the introduction of an explicit dependence of the tight-binding band and of the carrier concentration on pressure P. Comparison with the known experimental data for underdoped Bi2212 allows to single out an `intrinsic' contribution to d T_c / d P from that due to the carrier concentration, and provides a remarkable estimate of the dependence of the inter-site coupling strength on the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other required macros included; to be published in Phys. Rev. B (vol. 54

    Sagopilone (ZK-EPO, ZK 219477) for recurrent glioblastoma. A phase II multicenter trial by the European Organisation for Research and Treatment of Cancer (EORTC) Brain Tumor Group

    Get PDF
    Background: Sagopilone (ZK 219477), a lipophylic and synthetic analog of epothilone B, that crosses the blood-brain barrier has demonstrated preclinical activity in glioma models. Patients and methods: Patients with first recurrence/progression of glioblastoma were eligible for this early phase II and pharmacokinetic study exploring single-agent sagopilone (16 mg/m2 over 3 h every 21 days). Primary end point was a composite of either tumor response or being alive and progression free at 6 months. Overall survival, toxicity and safety and pharmacokinetics were secondary end points. Results: Thirty-eight (evaluable 37) patients were included. Treatment was well tolerated, and neuropathy occurred in 46% patients [mild (grade 1) : 32%]. No objective responses were seen. The progression-free survival (PFS) rate at 6 months was 6.7% [95% confidence interval (CI) 1.3-18.7], the median PFS was just over 6 weeks, and the median overall survival was 7.6 months (95% CI 5.3-12.3), with a 1-year survival rate of 31.6% (95% CI 17.7-46.4). Maximum plasma concentrations were reached at the end of the 3-h infusion, with rapid declines within 30 min after termination. Conclusions: No evidence of relevant clinical antitumor activity against recurrent glioblastoma could be detected. Sagopilone was well tolerated, and moderate-to-severe peripheral neuropathy was observed in despite prolonged administratio

    Search for Dark Matter Decay of the Free Neutron from the UCNA Experiment: \u3cem\u3en\u3c/em\u3e → χ + \u3cem\u3ee\u3c/em\u3e\u3csup\u3e+\u3c/sup\u3e\u3cem\u3ee\u3c/em\u3e\u3csup\u3e−\u3c/sup\u3e

    Get PDF
    It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of the possible final states discussed includes a single χ along with an e+e− pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∌4π acceptance using a pair of detectors that observe a volume of stored ultracold neutrons. The summed kinetic energy (Ee+e−) from such events is used to set limits, as a function of the χ mass, on the branching fraction for this decay channel. For χ masses consistent with resolving the neutron lifetime discrepancy, we exclude this as the dominant dark matter decay channel at ≫ 5σ level for 100 \u3c Ee+e− \u3c 644keV. If the χ + e+e− final state is not the only one, we set limits on its branching fraction of \u3c 10−4 for the above Ee+e− range at \u3e 90% confidence level
    • 

    corecore