174 research outputs found
Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures
In Coptis japonica cell cultures an alternative pathway has been discovered which leads from (S)-tetrahydrocolumbamine via (S)-canadine to berberine. The two enzymes involved have been partially purified. (S)-Tetrahydrocolumbamine is stereospecifically transformed into (S)-canadine under formation of the methylenedioxy bridge in ring A. This new enzyme was named (S)-canadine synthase. (S)-Canadine in turn is stereospecifically dehydrogenated to berberine by an oxidase, (S)-canadine oxidase (COX), which was partially purified (25-fold). This enzyme has many physical properties in common with the already known (S)-tetrahydroprotoberberine oxidase from Berberis but grossly differs from the latter enzyme in its cofactor requirement (Fe) and its substrate specificity. Neither (S)-norreticuline nor (S)-scoulerine serves as substrate for the Coptis enzyme, while both substrates are readily oxidized by the Berberis enzyme. The four terminal enzymes catalyzing the pathway from (S)-reticuline to berberine are housed in Berberis as well as in Coptis in smooth vesicles with a density of =1.14 g/ml. These vesicles have been enriched and characterized by electron microscopy
(1-Ferrocenyl-4,4,4-trifluorobutane-1,3-dionato-κ2 O,O)bis(triphenylphosphane)copper(I)
In the title mononuclear coordination complex, [CuFe(C5H5)(C9H5F3O2)(C18H15P)2], the CuI ion is coordinated by the chelating β-diketonate 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione ligand through two O atoms and the two datively bonded triphenylphosphane ligands resulting in a distorted tetrahedral coordination sphere. The CuI ion, together with its chelating butane-1,3-dione group, is mutually coplanar [greatest displacement of an atom from this plane = 0.037 (1) Å], and the CuI ion lies slightly above [0.013 (1) Å] the plane. The overall geometry, including the bond distances and angles within the complex, corresponds to those of other reported copper(I) β-diketonates featuring organic groups at the β-diketonate ligand
Mems based bridge monitoring supported by image-assisted total station
In this study, the feasibility of Micro-Electro-Mechanical System (MEMS) accelerometers and an image-assisted total station (IATS) for short-and long-term deformation monitoring of bridge structures is investigated. The MEMS sensors of type BNO055 from Bosch as part of a geo-sensor network are mounted at different positions of the bridge structure. In order to degrade the impact of systematic errors on the acceleration measurements, the deterministic calibration parameters are determined for fixed positions using a KUKA youBot in a climate chamber over certain temperature ranges. The measured acceleration data, with a sampling frequency of 100 Hz, yields accurate estimates of the modal parameters over short time intervals but suffer from accuracy degradation for absolute position estimates with time. To overcome this problem, video frames of a passive target, attached in the vicinity of one of the MEMS sensors, are captured from an embedded on-axis telescope camera of the IATS of type Leica Nova MS50 MultiStation with a practical sampling frequency of 10 Hz. To identify the modal parameters such as eigenfrequencies and modal damping for both acceleration and displacement time series, a damped harmonic oscillation model is employed together with an autoregressive (AR) model of coloured measurement noise. The AR model is solved by means of a generalized expectation maximization (GEM) algorithm. Subsequently, the estimated model parameters from the IATS are used for coordinate updates of the MEMS sensor within a Kalman filter approach. The experiment was performed for a synthetic bridge and the analysis shows an accuracy level of sub-millimetre for amplitudes and much better than 0.1 Hz for the frequencies. © 2019 M. Omidalizarandi et al
Recommended from our members
Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes
The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2)] with two equivalents of [Cu(pmdta)(X)2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato) type complexes [Cu2Ni(opboR2)(pmdta)2]X2 (R = Me, X = NO3– (1); R = Et, X = ClO4– (2); R = n-Pr, X = NO3– (3); opboR2 = o-phenylenebis(NR-substituted oxamidato); pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine). The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2)(pmdta)2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta)]2+ fragments separated by [NiII(opboR2)]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H) of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta)]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes
Recommended from our members
Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols
We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba)] (1%) in the host lattice of [n-Bu4N]2[Ni(opba)] (99%, opba = o-phenylenebis(oxamato)) and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2)] (1%) in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2)] (99%, opbon-Pr2 = o-phenylenebis(N(propyl)oxamidato)). For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG) multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2)]2– as compared to [Cu(opba)]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins
Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols
We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba)] (1%) in the host lattice of [n-Bu4N]2[Ni(opba)] (99%, opba = o-phenylenebis(oxamato)) and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2)] (1%) in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2)] (99%, opbon-Pr2 = o-phenylenebis(N(propyl)oxamidato)). For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG) multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2)]2– as compared to [Cu(opba)]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins
An ISS Small-Gain Theorem for General Networks
We provide a generalized version of the nonlinear small-gain theorem for the
case of more than two coupled input-to-state stable (ISS) systems. For this
result the interconnection gains are described in a nonlinear gain matrix and
the small-gain condition requires bounds on the image of this gain matrix. The
condition may be interpreted as a nonlinear generalization of the requirement
that the spectral radius of the gain matrix is less than one. We give some
interpretations of the condition in special cases covering two subsystems,
linear gains, linear systems and an associated artificial dynamical system.Comment: 26 pages, 3 figures, submitted to Mathematics of Control, Signals,
and Systems (MCSS
Phase Synchronization Control of Robotic Networks on Periodic Ellipses with Adaptive Network Topologies
This paper presents a novel formation control method for a large number of robots or vehicles described by Euler-Lagrange (EL) systems moving in elliptical orbits. A new
coordinate transformation method for phase synchronization of networked EL systems in elliptical trajectories is introduced to define desired formation patterns. The proposed phase synchronization controller synchronizes the motions of agents, thereby yielding a smaller synchronization error than an uncoupled control law in the presence of bounded disturbances. A complex time-varying and switching network topology, constructed by the
adaptive graph Laplacian matrix, relaxes the standard requirement of consensus stability, even permitting stabilization on an arbitrary unbalanced graph. The proofs of stability are constructed by robust contraction analysis, a relatively new nonlinear stability tool. An
example of reconfiguring swarms of spacecraft in Low Earth Orbit shows the effectiveness of the proposed phase synchronization controller for a large number of complex EL systems moving in elliptical orbits
Magnetic and structural properties of the iron silicide superconductor LaFeSiH
The magnetic and structural properties of the recently discovered
pnictogen/chalcogen-free superconductor LaFeSiH (~K) have been
investigated by Fe synchrotron M{\"o}ssbauer source (SMS) spectroscopy,
x-ray and neutron powder diffraction and Si nuclear magnetic resonance
spectroscopy (NMR). No sign of long range magnetic order or local moments has
been detected in any of the measurements and LaFeSiH remains tetragonal down to
2 K. The activated temperature dependence of both the NMR Knight shift and the
relaxation rate is analogous to that observed in strongly overdoped
Fe-based superconductors. These results, together with the
temperature-independent NMR linewidth, show that LaFeSiH is an homogeneous
metal, far from any magnetic or nematic instability, and with similar Fermi
surface properties as strongly overdoped iron pnictides. This raises the
prospect of enhancing the of LaFeSiH by reducing its carrier
concentration through appropriate chemical substitutions. Additional SMS
spectroscopy measurements under hydrostatic pressure up to 18.8~GPa found no
measurable hyperfine field
- …