8,998 research outputs found

    Transition scattering in stochastically inhomogeneous media

    Get PDF
    When a physical object (“a source”) without its own eigenfrequency moves through an acoustically homogeneous medium, the only possible form of acoustic radiation is the emission of Mach shock waves, which appear when the source velocity surpasses sonic speed. In nonhomogeneous media, in nonstationary media, or in the neighborhood of such media, the source motion is accompanied by the so-called “transition” radiation (diffraction or scattering), which has place even when the source moves with subsonic velocity. Key features pertaining to the formation of the acoustical transition scattering in media with fluctuating acoustical parameters are established. To analytically study the effect, the Green's function method formulated in terms of functional derivatives is used. The relationship between the wave number and frequency, k=k(ω), for acoustic waves is found. The results serve to determine the phasing conditions necessary for opening the transition scattering and Cherenkov radiation channel and to establish the physical explanation for the phenomenon—scattering (transformation) on inhomogeneities of the accompanied source field; i.e., formation of radiation appears when the attached field readjusts back to the equilibrium state after being deformed while passing through the fluctuations of the medium

    Hypothesis about Enrichment of Solar System

    Full text link
    Despite significant progress in the understanding of galactic nucleosynthesis and its influence on the solar system neighborhood, challenges remain in the understanding of enrichment of the solar system itself. Based on the detailed review of multi-disciplinary literature, we propose a scenario that an event of nucleogenesis -- not nucleosynthesis (from lower nucleon numbers A to higher A) but nuclear-fission (from higher A to lower A) -- occurred in the inner part of the solar system at one of the stages of its evolution. We propose a feasible mechanism of implementation of such event. The occurrence of such event could help explain the puzzles in yet-unresolved isotopic abundances, certain meteoritic anomalies, as well as peculiarities in the solar system's composition and planetary structure. We also discuss experimental data and available results from existing models (in several relevant sub-fields) that provide support and/or appear consistent with the hypothesis.Comment: 73 pages, 31 figures. arXiv admin note: text overlap with arXiv:1610.07202, arXiv:1109.3432, arXiv:1302.6530 by other author

    XMM observations of three middle-aged pulsars

    Full text link
    X-ray observations of middle-aged pulsars allow one to study nonthermal radiation from pulsar magnetospheres and thermal radiation from neutron star (NS) surfaces. In particular, from the analysis of thermal radiation one can infer the surface temperatures and radii of NSs, which is important for investigating evolution of these objects and constraining the equation of state of the superdense matter in the NS interiors. Here we present results of XMM observations of three middle-aged pulsars, J0538+2817, B0656+14 and J0633+1746 (Geminga), and briefly discuss mechanisms of their X-ray emission.Comment: 6 pages, 8 figures; to be published in Memorie della Societa' Astronomica Italiana, the Proceedings of the EPIC Consortium (held on Oct 14-16, 2003 in Palermo

    Mass-to-Radius Ratio for the Millisecond Pulsar J0437-4715

    Get PDF
    Properties of X-ray radiation emitted from the polar caps of a radio pulsar depend not only on the cap temperature, size, and position, but also on the surface chemical composition, magnetic field, and neutron star's mass and radius. Fitting the spectra and the light curves with neutron star atmosphere models enables one to infer these parameters. As an example, we present here results obtained from the analysis of the pulsed X-ray radiation of a nearby millisecond pulsar J0437-4715. In particular, we show that stringent constraints on the mass-to-radius ratio can be obtained if orientations of the magnetic and rotation axes are known, e.g., from the radio polarization data.Comment: 2 figures, aasms4.sty; accepted for publication in ApJLetter

    Systems of conservation laws with third-order Hamiltonian structures

    Get PDF
    We investigate nn-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in Pn+2\mathbb{P}^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space WW of dimension n+2n+2, classify nn-tuples of skew-symmetric 2-forms AαΛ2(W)A^{\alpha} \in \Lambda^2(W) such that ϕβγAβAγ=0, \phi_{\beta \gamma}A^{\beta}\wedge A^{\gamma}=0, for some non-degenerate symmetric ϕ\phi.Comment: 31 page
    corecore