678 research outputs found

    Field-Dependent Hall Effect in Single Crystal Heavy Fermion YbAgGe below 1K

    Get PDF
    We report the results of a low temperature (T >= 50 mK) and high field (H <= 180 kOe) study of the Hall resistivity in single crystals of YbAgGe, a heavy fermion compound that demonstrates field-induced non-Fermi-liquid behavior near its field-induced quantum critical point. Distinct features in the anisotropic, field-dependent Hall resistivity sharpen on cooling down and at the base temperature are close to the respective critical fields for the field-induced quantum critical point. The field range of the non-Fermi-liquid region decreases on cooling but remains finite at the base temperature with no indication of its conversion to a point for T -> 0. At the base temperature, the functional form of the field-dependent Hall coefficient is field direction dependent and complex beyond existing simple models thus reflecting the multi-component Fermi surface of the material and its non-trivial modification at the quantum critical point

    Comment on "Zeeman-Driven Lifshitz Transition: A Model for the Experimentally Observed Fermi-Surface Reconstruction in YbRh2Si2"

    Full text link
    In Phys. Rev. Lett. 106, 137002 (2011), A. Hackl and M. Vojta have proposed to explain the quantum critical behavior of YbRh2Si2 in terms of a Zeeman-induced Lifshitz transition of an electronic band whose width is about 6 orders of magnitude smaller than that of conventional metals. Here, we note that the ultra-narrowness of the proposed band, as well as the proposed scenario per se, lead to properties which are qualitatively inconsistent with the salient features observed in YbRh2Si2 near its quantum critical point.Comment: 3 page

    Magnetic field-induced quantum critical point in YbPtIn and YbPt0.98_{0.98}In single crystals

    Full text link
    Detailed anisotropic (H\parallelab and H\parallelc) resistivity and specific heat measurements were performed on online-grown YbPtIn and solution-grown YbPt0.98_{0.98}In single crystals for temperatures down to 0.4 K, and fields up to 140 kG; H\parallelab Hall resistivity was also measured on the YbPt0.98_{0.98}In system for the same temperature and field ranges. All these measurements indicate that the small change in stoichiometry between the two compounds drastically affects their ordering temperatures (Tord3.4_{ord}\approx3.4 K in YbPtIn, and 2.2\sim2.2 K in YbPt0.98_{0.98}In). Furthermore, a field-induced quantum critical point is apparent in each of these heavy fermion systems, with the corresponding critical field values of YbPt0.98_{0.98}In (Hcab^{ab}_c around 35-45 kG and Hcc120^{c}_c\approx120 kG) also reduced compared to the analogous values for YbPtIn (Hcab60^{ab}_c\approx60 kG and Hcc>140^{c}_c>140 kG

    Weyl-Kondo Semimetal: Towards Control of Weyl Nodes

    Full text link
    Heavy fermion semimetals represent a promising setting to explore topological metals driven by strong correlations. In this paper, we i) summarize the theoretical results in a Weyl-Kondo semimetal phase for a strongly correlated model with inversion-symmetry-breaking and time-reversal invariance, and the concurrent work that has experimentally discovered this phase in the non-magnetic non-centrosymmetric heavy fermion system Ce3_3Bi4_4Pd3_3; and ii) describe what is expected theoretically when the time-reversal symmetry is also broken.Comment: 6 pages, 3 figures; published version, and with updated reference

    Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars

    Full text link
    We present first results of a systematic investigation of the incomplete Paschen-Back effect in magnetic Ap stars. A short overview of the theory is followed by a demonstration of how level splittings and component strengths change with magnetic field strength for some lines of special astrophysical interest. Requirements are set out for a code which allows the calculation of full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I and V profiles of transitions in the multiplet 74 of FeII is discussed in some detail. It is shown that the incomplete Paschen-Back effect can lead to noticeable line shifts which strongly depend on total multiplet strength, magnetic field strength and field direction. Ghost components (which violate the normal selection rule on J) show up in strong magnetic fields but are probably unobservable. Finally it is shown that measurements of the integrated magnetic field modulus HsH_s are not adversely affected by the Paschen-Back effect, and that there is a potential problem in (magnetic) Doppler mapping if lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA

    Elastic properties of FeSi

    Full text link
    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C12C_{12} and C44C_{44} deviate from a quasiharmonic behavior at high temperature; whereas, C12C_{12} increases anomalously in the entire range of temperature, indicating a change in the electron structure of this materia

    Hall coefficient in heavy fermion metals

    Full text link
    Experimental studies of the antiferromagnetic (AF) heavy fermion metal YbRh2Si2\rm YbRh_2Si_2 in a magnetic field BB indicate the presence of a jump in the Hall coefficient at a magnetic-field tuned quantum state in the zero temperature limit. This quantum state occurs at BBc0B\geq B_{c0} and induces the jump even though the change of the magnetic field at B=Bc0B=B_{c0} is infinitesimal. We investigate this by using the model of heavy electron liquid with the fermion condensate. Within this model the jump takes place when the magnetic field reaches the critical value Bc0B_{c0} at which the ordering temperature TN(B=Bc0)T_N(B=B_{c0}) of the AF transition vanishes. We show that at BBc0B\to B_{c0}, this second order AF phase transition becomes the first order one, making the corresponding quantum and thermal critical fluctuations vanish at the jump. At T0T\to0 and B=Bc0B=B_{c0}, the Gr\"uneisen ratio as a function of temperature TT diverges. We demonstrate that both the divergence and the jump are determined by the specific low temperature behavior of the entropy S(T)S0+aT+bTS(T)\propto S_0+a\sqrt{T}+bT with S0S_0, aa and bb are temperature independent constants.Comment: 5 pages, 2 figure

    Sequential localization of a complex electron fluid

    Full text link
    Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with two distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.Comment: 21 pages, 4 figures (preprint format
    corecore