18,141 research outputs found

    The Accession of Finland and Sweden to NATO: Geopolitical implications for Russia's position in the Baltic Sea region

    Get PDF
    The article examines Sweden's and Finland's motives for ending their long-time non-aligned policies and joining NATO after Russia had launched a special military operation in Ukraine in February 2022. The two countries’ decision is shown to be in the interest of the United States, which has always sought to fill the geopolitical vacuum reigning after the collapse of the opposing Soviet bloc and the Soviet Union itself. Finland and Sweden were the missing links for Washington and NATO in the Baltic region and Northern Europe as a whole. The study analyses the major consequences of these geopolitical changes for Russia in the Baltic region. These include the increasing disparity in armed forces with NATO, the substantial expansion of the border with the Alliance, the acquisition of new territorial and infrastructural capabilities by NATO to deploy reinforcements and military equipment from member countries to the region, the potential stationing of nuclear weapons on the territories of new member countries, the risk of blockading the Kaliningrad region, as well as the Gulf of Finland, and the Danish straits for Russian vessels. It is stressed that in the current circumstances, Russia needs to consider multiple scenarios in the Baltic region. On the one hand, it must safeguard its interests with minimal damage. On the other hand, it is crucial to steer clear of uncontrolled escalation of tensions with NATO, as it entails the risk of a military clash

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Random Walk with a Boundary Line as a Free Massive Boson with a Defect Line

    Full text link
    We show that the problem of Random Walk with boundary attractive potential may be mapped onto the free massive bosonic Quantum Field Theory with a line of defect. This mapping permits to recover the statistical properties of the Random Walks by using boundary SS--matrix and Form Factor techniques.Comment: 17 pages, Latex, 3 figures include

    Oscillations of high energy neutrinos in matter: Precise formalism and parametric resonance

    Full text link
    We present a formalism for precise description of oscillation phenomena in matter at high energies or high densities, V > \Delta m^2/2E, where V is the matter-induced potential of neutrinos. The accuracy of the approximation is determined by the quantity \sin^2 2\theta_m \Delta V/2\pi V, where \theta_m is the mixing angle in matter and \Delta V is a typical change of the potential over the oscillation length (l \sim 2\pi/V). We derive simple and physically transparent formulas for the oscillation probabilities, which are valid for arbitrary matter density profiles. They can be applied to oscillations of high energy (E > 10 GeV) accelerator, atmospheric and cosmic neutrinos in the matter of the Earth, substantially simplifying numerical calculations and providing an insight into the physics of neutrino oscillations in matter. The effect of parametric enhancement of the oscillations of high energy neutrinos is considered. Future high statistics experiments can provide an unambiguous evidence for this effect.Comment: LaTeX, 5 pages, 1 figure. Linestyles in the figure corrected to match their description in the caption; improved discussion of the accuracy of the results; references added. Results and conclusions unchange

    Four-dimensional integration by parts with differential renormalization as a method of evaluation of Feynman diagrams

    Get PDF
    It is shown how strictly four-dimensional integration by parts combined with differential renormalization and its infrared analogue can be applied for calculation of Feynman diagrams.Comment: 6 pages, late

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    Separable Structure of Many-Body Ground-State Wave Function

    Full text link
    We have investigated a general structure of the ground-state wave function for the Schr\"odinger equation for NN identical interacting particles (bosons or fermions) confined in a harmonic anisotropic trap in the limit of large NN. It is shown that the ground-state wave function can be written in a separable form. As an example of its applications, this form is used to obtain the ground-state wave function describing collective dynamics for NN trapped bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication
    corecore