16,589 research outputs found

    A model for fluvial bedrock incision by impacting suspended and bed load sediment

    Get PDF
    A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events

    Development of an algebraic turbulence model for analysis of propulsion flows

    Get PDF
    A simple turbulence model that will be applicable to propulsion flows having both wall bounded and unbounded regions was developed and installed within the PARC Navier-Stokes code by linking two existing algebraic turbulence models. The first is the Modified Mixing Length (MML) model which is optimized for wall bounded flows. The second is the Thomas model, the standard algebraic turbulence model in PARC which has been used to calculate both bounded and unbounded turbulent flows but was optimized for the latter. This paper discusses both models and the method employed to link them into one model (referred to as the MMLT model). The PARC code with the MMLT model was applied to two dimensional turbulent flows over a flat plate and over a backward facing step to validate and optimize the model and to compare its predictions to those obtained with the three turbulence models already available in PARC

    Chemical Reactions in Turbulent Mixing Flows

    Get PDF
    Work is continuing primarily in gas phase turbulent mixing and chemical reactions. The liquid phase work to date is in its final stages of being analyzed and documented for dissemination in the form of archival publications. In the gas phase shear layer work, our investigations are concentrating on shear layer free stream density ratio effects, finite kinetic rate (Damköhler number) effects, and a design effort in support of the planned extension of the work to supersonic flows. In jet flows, progress has been made in the gas phase laser Rayleigh scattering techniques developed for conserved scalar measurements down to diffusion space and time scales. A new technique has been developed under joint support with the Gas Research Institute that permits the imaging of soot sheets in turbulent flames and is being used to describe the combustion flame sheets in methane flames. Theoretical work in progress is addressing the finite chemical rate problem as well as the diffusion-limited shear layer mixing problem. Advances in our data acquisition capabilities during the last year are permitting higher temporal resolution measurements to be taken with digital image arrays

    Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide

    Full text link
    A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250 K to 310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the polarizable GCPM water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space

    Investigation of warm fog properties and fog modification concepts

    Get PDF
    Warm fog seeding to determine potential of various sized and unsized hygroscopic chemicals for fog dissipatio

    Enhanced hydrogen storage in Ni/Ce composite oxides

    Get PDF
    The properties of dried (but not calcined) coprecipitated nickel ceria systems have been investigated in terms of their hydrogen emission characteristics following activation in hydrogen. XRD and BET data obtained on the powders show similarities to calcined ceria but it is likely that the majority of the material produced by the coprecipitation process is largely of an amorphous nature. XPS data indicate very little nickel is present on the outermost surface of the particles. Nevertheless, the thermal analytical techniques (TGA, DSC and TPD-MS) indicate that the hydrogen has access to the catalyst present and the nickel is able to generate hydrogen species capable of interacting with the support. Both unactivated and activated materials show two hydrogen emission features, viz. low temperature and high temperature emissions (LTE and HTE, respectively) over the temperature range 50 and 500 °C. A clear effect of hydrogen interaction with the material is that the activated sample not only emits much more hydrogen than the corresponding unactivated one but also at lower temperatures. H2 dissociation occurs on the reduced catalyst surface and the spillover mechanism transfers this active hydrogen into the ceria, possibly via the formation and migration of OH− species. The amount of hydrogen obtained (0.24 wt%) is 10× higher than those observed for calcined materials and would suggest that the amorphous phase plays a critical role in this process. The affiliated emissions of CO and CO2 with that of the HTE hydrogen (and consumption of water) strongly suggests a proportion of the hydrogen emission at this point arises from the water gas shift type reaction. It has not been possible from the present data to delineate between the various hydrogen storage mechanisms reported for ceria
    • …
    corecore