335 research outputs found

    A case of antibody formation against octreotide visualized with <sup>111</sup>In-octreotide scintigraphy

    Get PDF
    A case of antibody formation in a patient with carcinoid syndrome is described. The patient was treated with octreotide in dosages up to 1.5 mg/day. Serum samples were analysed for the presence of octreotide antibodies before and after 20 months of octreotide treatment. In-vivo 111In-octreotide scintigraphy was performed before and during therapy, and after antibodies had developed. Before treatment, no serum antibodies against octreotide were detected. After 20 months of treatment, they were detectable up to a 1:115 serum dilution. The serum binding of 125I-Tyr3-octreotide was blocked by adding excess unlabelled Tyr3-octreotide, indicating the presence of specific octreotide antibodies. Before treatment, a normal distribution of radioactivity in the spleen and kidneys, irregular uptake in the liver due to metastases, and a hot spot in the lower abdomen were found during 111In-octreotide scintigraphy. After antibodies had developed, increased radioactivity over the heart and high background radioactivity in the abdomen with only faint visualization of the spleen, liver, and kidneys were found, indicating a prolonged presence of 111In-octreotide in the blood resulting from its being bound to antibodies. Increased radioactivity was also seen at the injection sites of the drug in the upper legs. In-vitro incubation of biopsy tissue from this site with 125I-Tyr3-octreotide revealed diffuse guanosine triphosphate (GTP) independent specific binding non-G-protein linked binding of labelled octreotide. This report describes the characteristic abnormalities during in-vivo 111In-octreotide scintigraphy in a patient with octreotide antibodies. These consisted of high background radioactivity due to prolonged circulation of antibody coupled 111In-octreotide together with visualization of the injection sites, which most probably results from local accumulation of antibodies.</p

    A case of antibody formation against octreotide visualized with <sup>111</sup>In-octreotide scintigraphy

    Get PDF
    A case of antibody formation in a patient with carcinoid syndrome is described. The patient was treated with octreotide in dosages up to 1.5 mg/day. Serum samples were analysed for the presence of octreotide antibodies before and after 20 months of octreotide treatment. In-vivo 111In-octreotide scintigraphy was performed before and during therapy, and after antibodies had developed. Before treatment, no serum antibodies against octreotide were detected. After 20 months of treatment, they were detectable up to a 1:115 serum dilution. The serum binding of 125I-Tyr3-octreotide was blocked by adding excess unlabelled Tyr3-octreotide, indicating the presence of specific octreotide antibodies. Before treatment, a normal distribution of radioactivity in the spleen and kidneys, irregular uptake in the liver due to metastases, and a hot spot in the lower abdomen were found during 111In-octreotide scintigraphy. After antibodies had developed, increased radioactivity over the heart and high background radioactivity in the abdomen with only faint visualization of the spleen, liver, and kidneys were found, indicating a prolonged presence of 111In-octreotide in the blood resulting from its being bound to antibodies. Increased radioactivity was also seen at the injection sites of the drug in the upper legs. In-vitro incubation of biopsy tissue from this site with 125I-Tyr3-octreotide revealed diffuse guanosine triphosphate (GTP) independent specific binding non-G-protein linked binding of labelled octreotide. This report describes the characteristic abnormalities during in-vivo 111In-octreotide scintigraphy in a patient with octreotide antibodies. These consisted of high background radioactivity due to prolonged circulation of antibody coupled 111In-octreotide together with visualization of the injection sites, which most probably results from local accumulation of antibodies.</p

    Restoring the infected powerhouse:Mitochondrial quality control in sepsis

    Get PDF
    Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.</p

    Visualization of the thymus by substance P receptor scintigraphy in man

    Get PDF
    Substance P, an 11-amino acid neuropeptide, has an important role in modulating pain transmission through neurokinin 1 and 2 receptors. Substance P and other tachykinins may also play a role in the pathogenesis of inflammatory diseases. In this study we present the results concerning the metabolism of the substance P analogue [111In-DTPA-Arg1]-substance P in man, as well as the visualization of the thymus in patients with immune-mediated diseases. Twelve selected patients were investigated, comprising five with inflammatory bowel disease, one with ophthalmic Graves' disease, one with sclerosing cholangitis, one with Sjogren's syndrome, one with rheumatoid arthritis, one with systemic lupus erythematosus and two with myasthenia gravis. During and after intravenous administration of 150-250 MBq (2.5-5.0 μg) [111In-DTPA-Arg1]-substance P, blood pressure, heart rate and oxygen saturation were monitored. Radioactivity was measured in blood, urine and faeces during the 48 h after injection. Planar and single-photon emission tomographic images were obtained 4 and 24 h after injection. After administration of [111In-DTPA-Arg1]-substance P a transient flush was observed in all patients. Degradation of [111In-DTPA-Arg1] -substance P started in the first minutes after administration, resulting in a half-life of 10 min for the total plasma radioactivity, and of 4 min for the intact radiopharmaceutical, as identified with high-performance liquid chromatography. Urinary excretion accounted for &gt;95% of the radioactivity within 24 h post injection, and up to 0.05% was found in the faeces up to 60 h. In all patients uptake of radioactivity was found in the areolae mammae (in women), liver, spleen, kidneys and urinary bladder. In eight patients a high uptake of [111In-DTPA-Arg1]-substance P was observed in the thymus. We conclude that, despite its short half-life. [111In-DTPA-Arg1]-substance P, a new radiopharmaceutical, can be used to visualize the thymus. This may contribute to the investigation of the role of thymus in immune-mediated diseases. In addition, inflammatory sites in various diseases could be visualized.</p

    Visualization of the thymus by substance P receptor scintigraphy in man

    Get PDF
    Substance P, an 11-amino acid neuropeptide, has an important role in modulating pain transmission through neurokinin 1 and 2 receptors. Substance P and other tachykinins may also play a role in the pathogenesis of inflammatory diseases. In this study we present the results concerning the metabolism of the substance P analogue [111In-DTPA-Arg1]-substance P in man, as well as the visualization of the thymus in patients with immune-mediated diseases. Twelve selected patients were investigated, comprising five with inflammatory bowel disease, one with ophthalmic Graves' disease, one with sclerosing cholangitis, one with Sjogren's syndrome, one with rheumatoid arthritis, one with systemic lupus erythematosus and two with myasthenia gravis. During and after intravenous administration of 150-250 MBq (2.5-5.0 μg) [111In-DTPA-Arg1]-substance P, blood pressure, heart rate and oxygen saturation were monitored. Radioactivity was measured in blood, urine and faeces during the 48 h after injection. Planar and single-photon emission tomographic images were obtained 4 and 24 h after injection. After administration of [111In-DTPA-Arg1]-substance P a transient flush was observed in all patients. Degradation of [111In-DTPA-Arg1] -substance P started in the first minutes after administration, resulting in a half-life of 10 min for the total plasma radioactivity, and of 4 min for the intact radiopharmaceutical, as identified with high-performance liquid chromatography. Urinary excretion accounted for &gt;95% of the radioactivity within 24 h post injection, and up to 0.05% was found in the faeces up to 60 h. In all patients uptake of radioactivity was found in the areolae mammae (in women), liver, spleen, kidneys and urinary bladder. In eight patients a high uptake of [111In-DTPA-Arg1]-substance P was observed in the thymus. We conclude that, despite its short half-life. [111In-DTPA-Arg1]-substance P, a new radiopharmaceutical, can be used to visualize the thymus. This may contribute to the investigation of the role of thymus in immune-mediated diseases. In addition, inflammatory sites in various diseases could be visualized.</p

    Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors

    Get PDF
    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11

    Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate

    Get PDF
    Medical treatment and chemotherapy are seldom successful in achieving objective tumour reduction in patients with metastatic neuroendocrine tumours. Treatment with the radiolabelled somatostatin analogue [90Y-DOTA0,Tyr3]octreotide may result in partial remissions in 10–25% of patients. The newer analogue [DOTA0,Tyr3]octreotate (octreotate) has a ninefold higher affinity for the somatostatin receptor subtype 2 as compared with [DOTA0,Tyr3]octreotide. Also, labelled with the beta- and gamma-emitting radionuclide 177Lu, it has proved very successful in achieving tumour regression in animal models. The effects of 177Lu-octreotate therapy were studied in 35 patients with neuroendocrine gastro-entero-pancreatic (GEP) tumours who underwent follow-up for 3–6 months after receiving their final dose. Patients were treated with doses of 100, 150 or 200 mCi 177Lu-octreotate, to a final cumulative dose of 600–800 mCi, with treatment intervals of 6–9 weeks. Nausea and vomiting within the first 24 h after administration were present in 30% and 14% of the administrations, respectively. WHO toxicity grade 3 anaemia, leucocytopenia and thrombocytopenia occurred after 0%, 1% and 1% of the administrations, respectively. Serum creatinine and creatinine clearance did not change significantly. The effects of the therapy on tumour size were evaluable in 34 patients. Three months after the final administration, complete remission was found in one patient (3%), partial remission in 12 (35%), stable disease in 14 (41%) and progressive disease in seven (21%), including three patients who died during the treatment period. Tumour response was positively correlated with a high uptake on the octreoscan, limited hepatic tumour mass and a high Karnofsky Performance Score. Because of the limited efficacy of alternative therapies, many physicians currently adopt an expectant attitude when dealing with patients with metastatic GEP tumours. However, in view of the high success rate of therapy with 177Lu-octreotate and the absence of serious side-effects, we advocate its use in patients with GEP tumours without waiting for tumour progression

    Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour

    Get PDF
    Somatostatin receptor (sstr)-mediated radiation therapy is a new therapeutic modality for neuroendocrine (NE) tumours. High expression of sstr in NE tumours leads to tumour-specific uptake of radiolabelled somatostatin analogues and high absorbed doses. In this study, we present the first optimised radiation therapy via sstr using [177Lu-DOTA0-Tyr3]-octreotate given to nude mice xenografted with the human midgut carcinoid GOT1. The tumours in 22 out of 23 animals given therapeutic amounts showed dose-dependent, rapid complete remission. The diagnostic amount (0.5 MBq [177Lu-DOTA0-Tyr3]-octreotate) did not influence tumour growth and was rapidly excreted. In contrast, the therapeutic amount (30 MBq [177Lu-DOTA0-Tyr3]-octreotate) induced rapid tumour regression and entrapment of 177Lu so that the activity concentration of 177Lu remained high, 7 and 13 days after injection. The entrapment phenomenon increased the absorbed dose to tumours from 1.6 to 4.0 Gy MBq−1 and the tumours in animals treated with 30 MBq received 120 Gy. Therapeutic amounts of [177Lu-DOTA0-Tyr3]-octreotate rapidly induced apoptosis and gradual development of fibrosis in grafted tumours. In conclusion, human midgut carcinoid xenografts can be cured by receptor-mediated radiation therapy by optimising the uptake of radioligand and taking advantage of the favourable change in biokinetics induced by entrapment of radionuclide in the tumours
    corecore