12,028 research outputs found
Detection Rates for Close Binaries Via Microlensing
Microlensing is one of the most promising methods of reconstructing the
stellar mass function down to masses even below the hydrogen-burning limit. The
fundamental limit to this technique is the presence of unresolved binaries,
which can in principle significantly alter the inferred mass function. Here we
quantify the fraction of binaries that can be detected using microlensing,
considering specifically the mass ratio and separation of the binary. We find
that almost all binary systems with separations greater than of
their combined Einstein ring radius are detectable assuming a detection
threshold of . For two M dwarfs, this corresponds to a limiting separation
of \gsim 1 \au. Since very few observed M dwarfs have companions at
separations \lsim 1 \au, we conclude that close binaries will probably not
corrupt the measurements of the mass function. We find that the detectability
depends only weakly on the mass ratio. For those events for which individual
masses can be determined, we find that binaries can be detected down to .Comment: 19 pages including 6 figures. Uses phyyzx format. Send requests for
higher quality figures to [email protected]
The Information Content of Specialist Pricing
This paper examines a process by which information-revealing prices are determined by considering the private incentives of a price-setting agent (whom we refer to as a specialist). The specialist has private information that may be (partially) revealed through his choice of a pricing rule. We define an equilibrium as a pricing rule and a response to that rule by a representative trader that maximizes the expected utilities of the specialist and the trader, conditional on each having rational expectations. By analyzing the existence and nature of this equilibrium, we attempt to develop further insights into the behavior of markets with incomplete information
Systematic review of antimicrobial drug prescribing in hospitals.
Prudent antibiotic prescribing to hospital inpatients has the potential to reduce the incidences of antimicrobial resistance and healthcare-associated infection. We reviewed the literature from January 1980 to November 2003 to identify rigorous evaluations of interventions to improve hospital antibiotic prescribing. We identified 66 studies with interpretable data of which 16 reported 20 microbiological outcomes: Gram negative resistant bacteria (GNRB), 10 studies; Clostridium difficile associated diarrhoea (CDAD), 5 studies; vancomycin resistant enterococci (VRE), 3 studies and methicillin resistant Staphylococcus aureus (MRSA), 2 studies. Four studies provide good evidence that the intervention changed microbial outcomes with low risk of alternative explanations, eight studies provide less convincing evidence and four studies were negative. The strongest and most consistent evidence was for CDAD but we were able to analyse only the immediate impact of interventions because of nonstandardised durations of follow up. The ability to compare results of studies could be substantially improved by standardising methodology and reporting
Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei
The study of five-fold (P even, T odd) correlation in the interaction of slow
polarized neutrons with aligned nuclei is a possible way of testing the time
reversal invariance due to the expected enhancement of T violating effects in
compound resonances. Possible nuclear targets are discussed which can be
aligned both dynamically as well as by the "brute force" method at low
temperature. A statistical estimation is performed of the five-fold correlation
for low lying p wave compound resonances of the Sb, Sb and
I nuclei. It is shown that a significant improvement can be achieved
for the bound on the intensity of the fundamental parity conserving time
violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio
- …