19 research outputs found

    Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    Get PDF
    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies

    Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band

    Get PDF
    The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution

    The Impact of Dielectric Constant Model and Surface Reference on Differences Between SMOS and Aquarius Sea Surface Salinity

    Get PDF
    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences

    Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band

    Get PDF
    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial assessments of the salinity retrieved from Aquarius data showed degradation in accuracy at locations where glint from the galactic sky background was important. This was traced to an inaccurate correction for the Sky glint. We present comparisons of the simulator prediction to the Aquarius data in order to assess the performances of the models of various physical processes impacting the measurements, such as the effect of sea surface roughness, the impact of the celestial Sky and the Sun emission scattered at the rough ocean surface. We discuss what components of the simulator appear reliable and which ones need improvements. Improved knowledge on the radiative transfer models at L-band will not only lead to better salinity retrieved from Aquarius data, it will also allow be beneficial for SMOS or the upcoming SMAP mission

    Emissivity of Frozen Regions Retrieved from Aquarius Measurements

    Get PDF
    The land emissivity model used in the Aquarius data processing has been updated for the latest data release (V5.0). In order to improve the estimates of the brightness temperatures of frozen regions, the new model uses values of surface emissivity that have been estimated from the Aquarius measurements averaged over the entire duration of the mission. The retrieved emissivities depend on the geographic location, but they depend only marginally on time, temperature and snow cover

    Aquarius Overview and Up Date

    Get PDF
    Aquarius is an L-band instrument designed to map the surface salinity field of the global oceans. It consists of three L-band (1.41 GHz) radiometers and an L-band (1.26 GHz) scatterometer. The radiometers are the primary instruments for measuring salinity and the scatterometer provides a correction for surface roughness. Aquarius was launched in June 2011 and has been mapping the surface salinity field since it was turned on in August. In addition, Aquarius is now producing maps of radio frequency interference (RFI), Faraday rotation and soil moisture

    Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 1: Product description

    Get PDF
    Passive and active observations at L band (frequency ~1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50° are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km × 156 km and 74 km × 122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

    Status of Remote Sensing of Salinity by Aquarius

    Get PDF
    Aquarius is an L-band instrument designed to measure sea surface salinity from space. The instrument was launched in 2011 and data acquisition ended in June 2015 when control of the spacecraft was lost. Aquarius produced global maps of salinity with accuracy of 0.2 psu (Practical Salinity Unit) and special resolution of 150 kilometers as well as other products such as global maps of RFI (Radio Frequency Interference) and soil moisture. The mission will formally end December 2017

    Remote Sensing of Salinity and Overview of Results from Aquarius

    Get PDF
    Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 ps

    Aquarius Radiometer Status

    Get PDF
    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results
    corecore