1,612 research outputs found

    Fragment Coupling and the Construction of Quaternary Carbons Using Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By Visible-Light Photocatalysis.

    Get PDF
    The coupling of tertiary carbon radicals with alkene acceptors is an underdeveloped strategy for uniting complex carbon fragments and forming new quaternary carbons. The scope and limitations of a new approach for generating nucleophilic tertiary radicals from tertiary alcohols and utilizing these intermediates in fragment coupling reactions is described. In this method, the tertiary alcohol is first acylated to give the tert-alkyl N-phthalimidoyl oxalate, which in the presence of visible-light, catalytic Ru(bpy)3(PF6)2, and a reductant fragments to form the corresponding tertiary carbon radical. In addition to reductive coupling with alkenes, substitution reactions of tertiary radicals with allylic and vinylic halides is described. A mechanism for the generation of tertiary carbon radicals from tert-alkyl N-phthalimidoyl oxalates is proposed that is based on earlier pioneering investigations of Okada and Barton. Deuterium labeling and competition experiments reveal that the reductive radical coupling of tert-alkyl N-phthalimidoyl oxalates with electron-deficient alkenes is terminated by hydrogen-atom transfer

    Enantioselective Total Synthesis of Macfarlandin C, a Spongian Diterpenoid Harboring a Concave-Substituted cis-Dioxabicyclo[3.3.0]octanone Fragment.

    Get PDF
    The enantioselective total synthesis of the rearranged spongian diterpenoid (-)-macfarlandin C is reported. This is the first synthesis of a rearranged spongian diterpenoid in which the bulky hydrocarbon fragment is joined via a quaternary carbon to the highly hindered concave face of the cis-2,8-dioxabicyclo[3.3.0]octan-3-one moiety. The strategy involves a late-stage fragment coupling between a tertiary carbon radical and an electrophilic butenolide resulting in the stereoselective formation of vicinal quaternary and tertiary stereocenters. A stereoselective Mukaiyama hydration that orients a pendant carboxymethyl side chain cis to the bulky octahydronapthalene substituent was pivotal in fashioning the challenging concave-substituted cis-dioxabicyclo[3.3.0]octanone fragment

    Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.

    Get PDF
    A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine

    Total Synthesis of (±)-Actinophyllic Acid

    Get PDF
    During a search for new natural product structures as potential leads for developing agents for treating cardiovascular disorders, Quinn, Carroll, and co-workers reported in 2005 the isolation and relative configuration of actinophyllic acid (1).1 This structurally unique indole alkaloid was obtained from the leaves of the tree Alstonia actinophylla collected on the Cape York Peninsula, Far North Queensland, Australia. It was identified in a coupled CPU/ hippuricase assay as an inhibitor of carboxypeptidase U (CPU), an endogenous inhibitor of the process the body uses to clear fibrin clots (fibrinolysis).2 The structure of actinophyllic acid (1) is unique becausethe1-azabicyclo[4.4.2]dodecaneand1-azabicyclo[4.2.1]nonane fragments that define its structure are found in no other indole alkaloid. We report herein the first total synthesis of (()-actinophyllic acid (1) by a route that is sufficiently concise that it would be suitable for production of gram quantities of the natura
    corecore