1,619 research outputs found
Recommended from our members
Catalytic enantioselective synthesis of quaternary carbon stereocentres.
Quaternary carbon stereocentres-carbon atoms to which four distinct carbon substituents are attached-are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials
Fragment Coupling and the Construction of Quaternary Carbons Using Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By Visible-Light Photocatalysis.
The coupling of tertiary carbon radicals with alkene acceptors is an underdeveloped strategy for uniting complex carbon fragments and forming new quaternary carbons. The scope and limitations of a new approach for generating nucleophilic tertiary radicals from tertiary alcohols and utilizing these intermediates in fragment coupling reactions is described. In this method, the tertiary alcohol is first acylated to give the tert-alkyl N-phthalimidoyl oxalate, which in the presence of visible-light, catalytic Ru(bpy)3(PF6)2, and a reductant fragments to form the corresponding tertiary carbon radical. In addition to reductive coupling with alkenes, substitution reactions of tertiary radicals with allylic and vinylic halides is described. A mechanism for the generation of tertiary carbon radicals from tert-alkyl N-phthalimidoyl oxalates is proposed that is based on earlier pioneering investigations of Okada and Barton. Deuterium labeling and competition experiments reveal that the reductive radical coupling of tert-alkyl N-phthalimidoyl oxalates with electron-deficient alkenes is terminated by hydrogen-atom transfer
Recommended from our members
Attenuation of hedgehog/GLI signaling by NT1721 extends survival in pancreatic cancer.
BackgroundPancreatic cancer is one of the most lethal malignancies due to frequent late diagnosis, aggressive tumor growth and metastasis formation. Continuously raising incidence rates of pancreatic cancer and a lack of significant improvement in survival rates over the past 30 years highlight the need for new therapeutic agents. Thus, new therapeutic agents and strategies are urgently needed to improve the outcome for patients with pancreatic cancer. Here, we evaluated the anti-tumor activity of a new natural product-based epidithiodiketopiperazine, NT1721, against pancreatic cancer.MethodsWe characterized the anticancer efficacy of NT1721 in multiple pancreatic cancer cell lines in vitro and in two orthotopic models. We also compared the effects of NT1721 to clinically used hedgehog inhibitors and the standard-of-care drug, gemcitabine. The effect of NT1721 on hedgehog/GLI signaling was assessed by determining the expression of GLI and GLI target genes both in vitro and in vivo.ResultsNT1721 displayed IC50 values in the submicromolar range in multiple pancreatic cancer cell lines, while largely sparing normal pancreatic epithelial cells. NT1721 attenuated hedgehog/GLI signaling through downregulation of GLI1/2 transcription factors and their downstream target genes, which reduced cell proliferation and invasion in vitro and significantly decreased tumor growth and liver metastasis in two preclinical orthotopic mouse models of pancreatic cancer. Importantly, treatment with NT1721 significantly improved survival times of mice with pancreatic cancer compared to the standard-of-care drug, gemcitabine.ConclusionsFavorable therapeutics properties, i.e. 10-fold lower IC50 values than clinically used hedgehog inhibitors (vismodegib, erismodegib), a 90% reduction in liver metastasis and significantly better survival times compared to the standard-of-care drug, gemcitabine, provide a rational for testing NT1721 in the clinic either as a single agent or possibly in combination with gemcitabine or other therapeutic agents in PDAC patients overexpressing GLI1/2. This could potentially result in promising new treatment options for patients suffering from this devastating disease
Recommended from our members
Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling.
Alkyl oxalates are new bench-stable alcohol-activating groups for radical generation under visible light photoredox conditions. Using these precursors, the first net redox-neutral coupling of tertiary and secondary alcohols with electron-deficient alkenes is achieved
Enantioselective Total Synthesis of Macfarlandin C, a Spongian Diterpenoid Harboring a Concave-Substituted cis-Dioxabicyclo[3.3.0]octanone Fragment.
The enantioselective total synthesis of the rearranged spongian diterpenoid (-)-macfarlandin C is reported. This is the first synthesis of a rearranged spongian diterpenoid in which the bulky hydrocarbon fragment is joined via a quaternary carbon to the highly hindered concave face of the cis-2,8-dioxabicyclo[3.3.0]octan-3-one moiety. The strategy involves a late-stage fragment coupling between a tertiary carbon radical and an electrophilic butenolide resulting in the stereoselective formation of vicinal quaternary and tertiary stereocenters. A stereoselective Mukaiyama hydration that orients a pendant carboxymethyl side chain cis to the bulky octahydronapthalene substituent was pivotal in fashioning the challenging concave-substituted cis-dioxabicyclo[3.3.0]octanone fragment
Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.
A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine
Total Synthesis of (±)-Actinophyllic Acid
During a search for new natural product structures as potential leads for developing agents for treating cardiovascular disorders, Quinn, Carroll, and co-workers reported in 2005 the isolation and relative configuration of actinophyllic acid (1).1 This structurally unique indole alkaloid was obtained from the leaves of the tree Alstonia actinophylla collected on the Cape York Peninsula, Far North Queensland, Australia. It was identified in a coupled CPU/ hippuricase assay as an inhibitor of carboxypeptidase U (CPU), an endogenous inhibitor of the process the body uses to clear fibrin clots (fibrinolysis).2 The structure of actinophyllic acid (1) is unique becausethe1-azabicyclo[4.4.2]dodecaneand1-azabicyclo[4.2.1]nonane fragments that define its structure are found in no other indole alkaloid. We report herein the first total synthesis of (()-actinophyllic acid (1) by a route that is sufficiently concise that it would be suitable for production of gram quantities of the natura
- …