9,545 research outputs found

    The Supersymmetric Fine-Tuning Problem and TeV-Scale Exotic Scalars

    Full text link
    A general framework is presented for supersymmetric theories that do not suffer from fine-tuning in electroweak symmetry breaking. Supersymmetry is dynamically broken at a scale \Lambda \approx (10 - 100) TeV, which is transmitted to the supersymmetric standard model sector through standard model gauge interactions. The dynamical supersymmetry breaking sector possesses an approximate global SU(5) symmetry, whose SU(3) x SU(2) x U(1) subgroup is explicitly gauged and identified as the standard model gauge group. This SU(5) symmetry is dynamically broken at the scale \Lambda, leading to pseudo-Goldstone boson states, which we call xyons. We perform a detailed estimate for the xyon mass and find that it is naturally in the multi-TeV region. We study general properties of xyons, including their lifetime, and study their collider signatures. A generic signature is highly ionizing tracks caused by stable charged bound states of xyons, which may be observed at the LHC. We also consider cosmology in our scenario and find that a consistent picture can be obtained. Our framework is general and does not depend on the detailed structure of the Higgs sector, nor on the mechanism of gaugino mass generation.Comment: 53 pages, 7 figure

    Quantum Hall Ferromagnetism in Graphene

    Full text link
    Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy excitations. When Zeeman and spin-orbit interactions are neglected its Landau levels are four-fold degenerate, explaining the 4e2/h4 e^2/h separation between quantized Hall conductivity values seen in recent experiments. In this paper we derive a criterion for the occurrence of interaction-driven quantum Hall effects near intermediate integer values of e2/he^2/h due to charge gaps in broken symmetry states.Comment: 4 pages, 1 figur

    Viable Ultraviolet-Insensitive Supersymmetry Breaking

    Get PDF
    It is known that one can add D-term contributions for U(1)_Y and U(1)_{B-L} to the anomaly-mediated supersymmetry breaking to make the superparticle spectrum phenomenologically viable. We point out that this can be done without spoiling its important virtue, namely the ultraviolet insensitivity. This framework can be derived from supersymmetry breaking and U(1)_{B-L} breaking on hidden brane(s).Comment: 19 pages, Latex, small clarifications adde

    Topological delocalization of two-dimensional massless Dirac fermions

    Full text link
    The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which e.g., underlies the theoretical description of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing gg. We also provide an argument based on the spectral flows under twisting boundary conditions, which shows that none of states of the massless Dirac Hamiltonian can be localized.Comment: 4 pages, 2 figure

    Dimension-six top-Higgs interaction and its effect in collider phenomenology

    Get PDF
    Measurement of the Yukawa interaction between the top quark and the Higgs boson should be useful to clarify the mechanism of fermion mass generation. We discuss the impact of non-standard interactions characterized by dimension-six operators on the effective top Yukawa coupling. The cross section of the process ee+WW+ννˉttˉννˉe^-e^+ \to W^-W^+ \nu \bar \nu \to t \bar t \nu \bar \nu is calculated including these operators, and possible deviation from the standard model prediction is evaluated under the constraint from perturbative unitarity and current experimental data. We find that if the new physics scale is in a TeV region, the cross section can be significantly enhanced due to the non-standard interactions. Such a large effect should be detectable at the International Linear Collider.Comment: 22 pages, RevTex4, 20 eps figure

    Ohmic Contact Formation on N-Type 6H-SiC Using Poly-Si and Silicides

    Get PDF
    Silicon Carbide with its wide bandgap, high thermal conductivity, and high breakdown electric field is an attractive material to be used for applications in high power, and high temperature semiconductor devices. For such applications, it is extremely important to be able to form stable ohmic contacts. Various metals have been attempted to form ohmic contacts on SiC such as Ni, Ti, and Al. However it has been observed that these metallization schemes have degraded performance due to carbon accumulation by forming carbides at the interface. In this study, polycide (poly Si + silicide) based metallizations have been investigated, using NiSi2 and TiSi2. Silicides of Ni and Ti have been synthesized employing a layer of heavily doped polysilicon to prevent any form of reaction between the metal and the carbon at the SiC interface. Using a 0.5cm2 n-type 6H-SiC samples with various doping concentrations (1.3 x 1018 cm-3 and 1.7 x 1018 cm-3), the electrical and structural properties of NiSi2 and TiSi2 have been examined by fabricating linear transmission line model (TLM) structures. I-V characterization have been carried out to determine the specific contact resistivity, PC. Samples were processed at various annealing temperatures to determine conditions for the best ohmic contact resistivity

    Supersymmetry without a Light Higgs Boson

    Get PDF
    Motivated by the absence, so far, of any direct signal of conventional low-energy supersymmetry, we explore the consequences of making the lightest Higgs boson in supersymmetry relatively heavy, up to about 300 GeV, in the most straightforward way, i.e. via the introduction of a chiral singlet S with a superpotential interaction with the Higgs doublets, \lambda S H_1 H_2. The coupling \lambda dominates over all the other couplings and, to maintain the successful perturbative analysis of the ElectroWeak Precision Tests, is only restricted to remain perturbative up to about 10 TeV. The general features of this "\lambda SUSY" framework, which deviates significantly from the MSSM or the standard NMSSM, are analyzed in different areas: ElectroWeak Precision Tests, Dark Matter, naturalness bounds on superparticle masses, and LHC signals. There is a rich Higgs/Higgsino sector in the (200-700)GeV mass region, which may include LSP Higgsino dark matter. All other superpartners, apart from the top squarks, may naturally be heavier than 1-2 TeV. This picture can be made consistent with gauge coupling unification.Comment: 27 page

    Disorder-induced metal-insulator transitions in three-dimensional topological insulators and superconductors

    Full text link
    We discuss the effects of disorder in time-reversal invariant topological insulators and superconductors in three spatial dimensions. For three-dimensional topological insulator in symplectic (AII) symmetry class, the phase diagram in the presence of disorder and a mass term, which drives a transition between trivial and topological insulator phases, is computed numerically by the transfer matrix method. The numerics is supplemented by a field theory analysis (the large-NfN_f expansion where NfN_f is the number of valleys or Dirac cones), from which we obtain the correlation length exponent, and several anomalous dimensions at a non-trivial critical point separating a metallic phase and a Dirac semi-metal. A similar field theory approach is developed for disorder-driven transitions in symmetry class AIII, CI, and DIII. For these three symmetry classes, where topological superconductors are characterized by integer topological invariant, a complementary description is given in terms of the non-linear sigma model supplemented with a topological term which is a three-dimensional analogue of the Pruisken term in the integer quantum Hall effect.Comment: 19 pages, 5 figure

    More Visible Effects of the Hidden Sector

    Full text link
    There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.Comment: 25 pages; small clarifications and corrections, version to appear in Phys. Rev.

    Warped Supersymmetric Unification with Non-Unified Superparticle Spectrum

    Full text link
    We present a new supersymmetric extension of the standard model. The model is constructed in warped space, with a unified bulk symmetry broken by boundary conditions on both the Planck and TeV branes. In the supersymmetric limit, the massless spectrum contains exotic colored particles along with the particle content of the minimal supersymmetric standard model (MSSM). Nevertheless, the model still reproduces the MSSM prediction for gauge coupling unification and does not suffer from a proton decay problem. The exotic states acquire masses from supersymmetry breaking, making the model completely viable, but there is still the possibility that these states will be detected at the LHC. The lightest of these states is most likely A_5^XY, the fifth component of the gauge field associated with the broken unified symmetry. Because supersymmetry is broken on the SU(5)-violating TeV brane, the gaugino masses generated at the TeV scale are completely independent of one another. We explore some of the unusual features that the superparticle spectrum might have as a consequence.Comment: 21 pages, Latex, version to appear in Phys. Rev.
    corecore