31 research outputs found

    Heat transfer augmentation during water steam condensation on twisted profile tubes

    Full text link
    Some results are presented of experimental and theoretical research of hydrodynamics and heat transfer during condensation of water steam (both stationary and slowly moving) on twisted profile tubes (TPT). For a heat transfer coefficient during condensation of stationary steam on TPT two characteristic areas were observed. At small values of condensate film Reynolds numbers a TPT heat transfer coefficient can be 10-15% below that of the plain tubes depending on profile parameters. With the rise of both condensate film Reynolds number and profile parameter h/s heat transfer coefficient increases up to 50% in comparison to a plain tube. During slowly moving steam condensation the TPT heat transfer coefficient increases up to 70% as compared to a plain tube. Conducted research and industrial tests results showed that the assured effect of a heat transfer coefficient increase in TPT heat exchangers could reach for turbine condensers 15%, for low cycle heaters 35-40%. The heat exchangers hydraulic resistance increases by 40-70%. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Single-phase media hydrodynamics and heat transfer in heat exchangers with twisted profile tubes

    Full text link
    A profiled heat exchanger tube is the one in which some features have been incorporated into the tube geometry for heat transfer enhancement. They offer a perspective method of steam turbine shell-and-tube heat exchangers improvement. Twisted profile tubes (TPT) are widely used in power engineering. This paper presents some results of experimental and theoretical research of hydrodynamics and heat transfer in TPTs. It is revealed that the heat transfer coefficient for water flow in a TPT increases up to 80% compared to that of a plain tube. With a rise of media Reynolds number, the heat transfer rate in a TPT decreases in comparison to that of a plain tube, but for air flow in a TPT the heat transfer coefficients ratio does not depend on the Reynolds number value. Water flow hydraulic losses in TPTs increase from 15 to 100% depending on the tube profile parameters. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Über das Wesen der Vitalfärbung

    No full text

    Hierarchical level of detail optimization for constant frame rate rendering of radiosity scenes

    No full text
    The predictive hierarchical level of detail optimization algorithm of Mason and Blake is experimentally evaluated in the form of a practical application to hierarchical radiosity. In a novel approach the recursively subdivided patch hierarchy generated by a perceptually refined hierarchical radiosity algorithm is treated as a hierarchical level of detail scene description. In this way we use the Mason-Blake algorithm to successfully maintain constant frame rates during the interactive rendering of the radiosity-generated scene. We establish that the algorithm is capable of maintaining uniform frame rendering times, but that the execution time of the optimization algorithm itself is significant and is strongly dependent on frame-to-frame coherence and the granularity of the level of detail description. To compensate we develop techniques which effectively reduce and limit the algorithm execution time: We restrict the execution times of the algorithm to guard against pathological situations and propose simplification transforms that increase the granularity of the scene description, at minimal cost to visual quality. We demonstrate that using these techniques the algorithm is capable of maintaining interactive frame rates for scenes of arbitrary complexity. Furthermore we provide guidelines for the appropriate use of predictive level of detail optimization algorithms derived from our practical experience

    1 Applying Predictive Level of Detail

    No full text
    The predictive hierarchical level of detail optimization algorithm of Mason and Blake is experimentally evaluated in the form of a practical application to hierarchical radiosity. In a novel approach the recursively subdivided patch hierarchy generated by a perceptually refined hierarchical radiosity algorithm is treated as a hierarchical level of detail scene description. In this way we use the Mason-Blake algorithm to successfully maintain constant frame rates during the interactive rendering of the radiosity-generated scene. We establish that the algorithm is capable of maintaining uniform frame rendering times, but that the execution time of the optimization algorithm itself is significant and is strongly dependent on frame-to-frame coherence and the granularity of the level of detail description. To compensate we develop techniques which effectively reduce and limit the algorithm execution time: We restrict the execution times of the algorithm to guard against pathological situations and propose simplification transforms that increase the granularity of the scene description, at minimal cost to visual quality. We demonstrate that using these techniques the algorithm is capable of maintaining interactive frame rates for scenes of arbitrary complexity. Furthermore we provide guidelines for the appropriate use of predictive level of detail optimization algorithms derived from our practical experience

    Die Verdauungsvorgänge bei Protozoen

    No full text

    Hardware Accelerated Visibility Preprocessing using Adaptive Sampling Abstract

    No full text
    We present a novel aggressive visibility preprocessing technique for general 3D scenes. Our technique exploits commodity graphics hardware and is faster than most conservative solutions, while simultaneously not overestimating the set of visible polygons. The cost of this benefit is that of potential image error. In order to reduce image error, we have developed an effective error minimization heuristic. We present results showing the application of our technique to highly complex scenes, consisting of many small polygons. We give performance results, an in depth error analysis using various metrics, and an empirical analysis showing a high degree of scalability. We show that our technique can rapidly compute from-region visibility (1hr 19min for a 5 million polygon forest), with minimal error (0.3 % of image). On average 91.3 % of the scene is culled
    corecore