1,296 research outputs found

    Dynamics of the Free Surface of a Conducting Liquid in a Near-Critical Electric Field

    Full text link
    Near-critical behavior of the free surface of an ideally conducting liquid in an external electric field is considered. Based on an analysis of three-wave processes using the method of integral estimations, sufficient criteria for hard instability of a planar surface are formulated. It is shown that the higher-order nonlinearities do not saturate the instability, for which reason the growth of disturbances has an explosive character.Comment: 19 page

    Imaginary-time formulation of steady-state nonequilibrium: application to strongly correlated transport

    Full text link
    We extend the imaginary-time formulation of the equilibrium quantum many-body theory to steady-state nonequilibrium with an application to strongly correlated transport. By introducing Matsubara voltage, we keep the finite chemical potential shifts in the Fermi-Dirac function, in agreement with the Keldysh formulation. The formulation is applied to strongly correlated transport in the Kondo regime using the quantum Monte Carlo method.Comment: 5 pages 3 figure

    Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    Full text link
    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the pQCD based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3-8 compared to elastic scatterings. The shear viscosity scales with the coupling as 1/(alpha_s^2\log(1/alpha_s)). For a constant coupling constant the shear viscosity to entropy density ratio has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.Comment: 17 pages, 5 figure

    Imaginary-time formulation of steady-state nonequilibrium in quantum dot models

    Full text link
    We examine the recently proposed imaginary-time formulation for strongly correlated steady-state nonequilibrium for its range of validity and discuss significant improvements in the analytic continuation of the Matsubara voltage as well as the fermionic Matsubara frequency. The discretization error in the conventional Hirsch-Fye algorithm has been compensated in the Fourier transformation with reliable small frequency behavior of self-energy. Here we give detailed discussions for generalized spectral representation ansatz by including high order vertex corrections and its numerical analytic continuation procedures. The differential conductance calculations agree accurately with existing data from other nonequilibrium transport theories. It is verified that, at finite source-drain voltage, the Kondo resonance is destroyed at bias comparable to the Kondo temperature. Calculated coefficients in the scaling relation of the zero bias anomaly fall within the range of experimental estimates.Comment: 16 pages, 10 figures, Comparison to other theories adde

    Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms

    Full text link
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the variational Schwinger method, we construct approximate semi-analytical formulae for collective frequencies of the radial and the axial breathing modes of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. It is shown that the method gives nearly exact solutions.Comment: 11 page

    Research of the possibility of self-excited vibrations amplitude reducing when turning by the variation of the cutting speed

    Get PDF
    In this paper the results of research of the possibilities of self-excited vibrations suppression in turning by the cutting speed modulation are presented. The experimental approach to conduct the variative control of lathe main drive is described. The possibilities of main drive working in continuous rotation speed mode are researched.В статье приведены результаты исследования возможности подавления автоколебаний при точении модулированием скоростью резания. Описан экспериментальный подход осуществления вариативного управления приводом главного движения токарного станка. Исследованы возможности привода главного движения работы в режиме постоянного варьирования скоростью вращения

    Phonon Rabi-assisted tunneling in diatomic molecules

    Full text link
    We study electronic transport in diatomic molecules connected to metallic contacts in the regime where both electron-electron and electron-phonon interactions are important. We find that the competition between these interactions results in unique resonant conditions for interlevel transitions and polaron formation: the Coulomb repulsion requires additional energy when electrons attempt phonon-assisted interlevel jumps between fully or partially occupied levels. We apply the equations of motion approach to calculate the electronic Green's functions. The density of states and conductance through the system are shown to exhibit interesting Rabi-like splitting of Coulomb blockade peaks and strong temperature dependence under the it interacting resonant conditions.Comment: Updated version, 5 pages, 4 figures, to be published in Phys. Rev. B on 9/1

    Mapping of strongly correlated steady-state nonequilibrium to an effective equilibrium

    Full text link
    By mapping steady-state nonequilibrium to an effective equilibrium, we formulate nonequilibrium problems within an equilibrium picture where we can apply existing equilibrium many-body techniques to steady-state electron transport problems. We study the analytic properties of many-body scattering states, reduce the boundary condition operator in a simple form and prove that this mapping is equivalent to the correct linear-response theory. In an example of infinite-U Anderson impurity model, we approximately solve for the scattering state creation operators, based on which we derive the bias operator Y to construct the nonequilibrium ensemble in the form of the Boltzmann factor exp(-beta(H-Y)). The resulting Hamiltonian is solved by the non-crossing approximation. We obtain the Kondo anomaly conductance at zero bias, inelastic transport via the charge excitation on the quantum dot and significant inelastic current background over a wide range of bias. Finally, we propose a self-consistent algorithm of mapping general steady-state nonequilibrium.Comment: 15 pages, 9 figure
    corecore