304 research outputs found

    Bound States in the Continuum and Fano Resonances in the Dirac Cone Spectrum

    Full text link
    We consider light scattering by two dimensional arrays of high-index dielectric spheres arranged into the triangular lattice. It is demonstrated that in the case a triple degeneracy of resonant leaky modes in the Gamma-point the scattering spectra exhibit a complicated picture of Fano resonances with extremely narrow line-width. The Fan features are explained through coupled mode theory for a Dirac cone spectrum as a signature of optical bound states in the continuum (BIC). It is found that the standing wave in-Gamma BIC induces a ring of off-Gamma BICs due to different scaling laws for real and imaginary parts of the resonant eigenfrequencies in the Dirac cone spectrum. A quantitative theory of the spectra is proposed

    Correlated behavior of conductance and phase rigidity in the transition from the weak-coupling to the strong-coupling regime

    Full text link
    We study the transmission through different small systems as a function of the coupling strength vv to the two attached leads. The leads are identical with only one propagating mode ξCE\xi^E_C in each of them. Besides the conductance GG, we calculate the phase rigidity ρ\rho of the scattering wave function ΨCE\Psi^E_C in the interior of the system. Most interesting results are obtained in the regime of strongly overlapping resonance states where the crossover from staying to traveling modes takes place. The crossover is characterized by collective effects. Here, the conductance is plateau-like enhanced in some energy regions of finite length while corridors with zero transmission (total reflection) appear in other energy regions. This transmission picture depends only weakly on the spectrum of the closed system. It is caused by the alignment of some resonance states of the system with the propagating modes ξCE\xi^E_C in the leads. The alignment of resonance states takes place stepwise by resonance trapping, i.e. it is accompanied by the decoupling of other resonance states from the continuum of propagating modes. This process is quantitatively described by the phase rigidity ρ\rho of the scattering wave function. Averaged over energy in the considered energy window, is correlated with 11-. In the regime of strong coupling, only two short-lived resonance states survive each aligned with one of the channel wave functions ξCE\xi^E_C. They may be identified with traveling modes through the system. The remaining M2M-2 trapped narrow resonance states are well separated from one another.Comment: Resonance trapping mechanism explained in the captions of Figs. 7 to 11. Recent papers added in the list of reference

    Complex Energy Spectrum and Time Evolution of QBIC States in a Two-Channel Quantum wire with an Adatom Impurity

    Full text link
    We provide detailed analysis of the complex energy eigenvalue spectrum for a two-channel quantum wire with an attached adatom impurity. The study is based on our previous work [Phys. Rev. Lett. 99, 210404 (2007)], in which we presented the quasi-bound states in continuum (or QBIC states). These are resonant states with very long lifetimes that form as a result of two overlapping continuous energy bands one of which, at least, has a divergent van Hove singularity at the band edge. We provide analysis of the full energy spectrum for all solutions, including the QBIC states, and obtain an expansion for the complex eigenvalue of the QBIC state. We show that it has a small decay rate of the order g6g^6, where gg is the coupling constant. As a result of this expansion, we find that this state is a non-analytic effect resulting from the van Hove singularity; it cannot be predicted from the ordinary perturbation analysis that relies on Fermi's golden rule. We will also numerically demonstrate the time evolution of the QBIC state using the effective potential method in order to show the stability of the QBIC wave function in comparison with that of the other eigenstates.Comment: Around 20 pages, 50 total figure

    Phase rigidity and avoided level crossings in the complex energy plane

    Get PDF
    We consider the effective Hamiltonian of an open quantum system, its biorthogonal eigenfunctions ϕλ\phi_\lambda and define the value rλ=(ϕλϕλ)/r_\lambda = (\phi_\lambda|\phi_\lambda)/ that characterizes the phase rigidity of the eigenfunctions ϕλ\phi_\lambda. In the scenario with avoided level crossings, rλr_\lambda varies between 1 and 0 due to the mutual influence of neighboring resonances. The variation of rλr_\lambda may be considered as an internal property of an {\it open} quantum system. In the literature, the phase rigidity ρ\rho of the scattering wave function ΨCE\Psi^E_C is considered. Since ΨCE\Psi^E_C can be represented in the interior of the system by the ϕλ\phi_\lambda, the phase rigidity ρ\rho of the ΨCE\Psi^E_C is related to the rλr_\lambda and therefore also to the mutual influence of neighboring resonances. As a consequence, the reduction of the phase rigidity ρ\rho to values smaller than 1 should be considered, at least partly, as an internal property of an open quantum system in the overlapping regime. The relation to measurable values such as the transmission through a quantum dot, follows from the fact that the transmission is, in any case, resonant with respect to the effective Hamiltonian. We illustrate the relation between phase rigidity ρ\rho and transmission numerically for small open cavities.Comment: 6 pages, 3 figure
    corecore