255 research outputs found

    Методическая работа в дошкольной образовательной организации как условие развития профессионально-педагогической культуры педагогов

    Get PDF
    Тема работы актуальна. В ВКР представлена методическая работа с педагогами ДОУ, по формирования профессионально-педагогической культуры. Работа имеет практическую значимост

    Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    Get PDF
    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells

    Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells

    Get PDF
    BACKGROUND: The identification and characterization of cancer stem cells (CSCs) is imperative to understanding the mechanism of cancer pathogenesis. Growing evidence suggests that CSCs play critical roles in the development and progression of cancer. However, controversy exists as to whether CSCs arise from bone marrow-derived cells (BMDCs). METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, n-nitrosodiethylamine (DEN) was used to induce tumor formation in female mice that received bone marrow from male mice. Tumor formation was induced in 20/26 mice, including 12 liver tumors, 6 lung tumors, 1 bladder tumor and 1 nasopharyngeal tumor. Through comparison of fluorescence in situ hybridization (FISH) results in corresponding areas from serial tumor sections stained with HandE, we determined that BMDCs were recruited to both tumor tissue and normal surrounding tissue at a very low frequency (0.2-1% in tumors and 0-0.3% in normal tissues). However, approximately 3-70% of cells in the tissues surrounding the tumor were BMDCs, and the percentage of BMDCs was highly associated with the inflammatory status of the tissue. In the present study, no evidence was found to support the existence of fusion cells formed form BMDCs and tissue-specific stem cells. CONCLUSIONS: In summary, our data suggest that although BMDCs may contribute to tumor progression, they are unlike to contribute to tumor initiation.published_or_final_versio

    Homing and Long-Term Engraftment of Long- and Short-Term Renewal Hematopoietic Stem Cells

    Get PDF
    Long-term hematopoietic stem cells (LT-HSC) and short-term hematopoietic stem cells (ST-HSC) have been characterized as having markedly different in vivo repopulation, but similar in vitro growth in liquid culture. These differences could be due to differences in marrow homing. We evaluated this by comparing results when purified ST-HSC and LT-HSC were administered to irradiated mice by three different routes: intravenous, intraperitoneal, and directly into the femur. Purified stem cells derived from B6.SJL mice were competed with marrow cells from C57BL/6J mice into lethally irradiated C57BL/6J mice. Serial transplants into secondary recipients were also carried out. We found no advantage for ST-HSC engraftment when the cells were administered intraperitoneally or directly into femur. However, to our surprise, we found that the purified ST-HSC were not short-term in nature but rather gave long-term multilineage engraftment out to 387 days, albeit at a lower level than the LT-HSC. The ST-HSC also gave secondary engraftment. These observations challenge current models of the stem cell hierarchy and suggest that stem cells are in a continuum of change

    Humanized Rag1−/−γc−/− Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

    Get PDF
    Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting

    Towards a Clinically Relevant Lentiviral Transduction Protocol for Primary Human CD34+ Hematopoietic Stem/Progenitor Cells

    Get PDF
    Background: Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multipotency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34 + HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. Methodology/Principal Findings: Using commercially available G-CSF mobilized peripheral blood (PB) CD34 + cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, prestimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. Conclusions/Significance: This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34 + cells
    corecore