12 research outputs found

    Arabidopsis thaliana CYCLIC NUCLEOTIDE-GATED CHANNEL2 mediates extracellular ATP signal transduction in root epidermis.

    Get PDF
    Funder: Agence Nationale de la Recherche; Id: http://dx.doi.org/10.13039/501100001665Funder: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada; Id: http://dx.doi.org/10.13039/501100002790Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+ ]cyt ) increase as a second messenger. The downstream PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+ ]cyt signalling in roots. Extracellular ATP-induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+ ]cyt were measured with aequorin, and root transcriptional changes were determined by quantitative real-time PCR. Two cngc2 loss-of-function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic aequorin). Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-subunit in immunity signalling). Activation of PM Ca2+ influx currents also required CNGC2. The eATP-induced [Ca2+ ]cyt increase and transcriptional response in cngc2 roots were significantly impaired. CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+ influx, causing depolarization leading to [Ca2+ ]cyt increase and damage-related transcriptional response

    Optical proximity correction for 0.13 m SiGe:C BiCMOS

    No full text
    We present results for a rule based optical proximity (RB-OPC) and a model based optical proximity correction (MB-OPC) for 0.13 m SiGe:C BiCMOS technology. The technology provides integrated high performance heterojunction bipolar transistors (HBTs) with cut-off frequencies up to 300 GHz. This requires an optical proximity correction of critical, layers with an excellent mask quality. This paper provides results of the MB-OPC and RB-OPC using the Mentor Calibre software in comparison to uncorrected structures (NO-OPC). We show RB- and MB-OPC methods for the shallow trench and gate layer, and the RB-OPC for the emitter window-, contact- and metal layers. We will discuss the impact of the RB- and MB-OPC rules on the process margin and yield in the 0.13 m SiGe:C BiCMOS technology, based on CD-SEM data obtained from the evaluation of the RB- and MB-OPC corrected SRAM cells
    corecore