391 research outputs found
Atomistic Simulations of the Efficiencies of Ge and Pt Ion Implantation into Graphene
Recent success in the direct implantation of 74Ge+ ion, the heaviest atomic impurity to date, into monolayer graphene presents a general question of the efficiency of low-energy ion implantation technique for heavy atoms. A comparative computational study, using classical molecular dynamics, of low-energy Ge and Pt ions implantation into single- and double-layer graphene is presented. It confirms that the highest probability for the perfect substitutional doping of single-layer graphene, i.e., direct implanting of ion into monovacancy, can be achieved 80 eV and it reaches the value of 64% for Ge ions directed at 45Β° angle to graphene plane and 21% for Pt ion beam perpendicular to graphene. Implantation efficiency is strongly dependent on the angle of ion beam. The sputtering yield of carbon atoms is found to be lower for double layer of graphene, which has better protective properties against low-energy ion irradiation damage than a single graphene layer. In double-layer graphene, incident ions traveling in the direction perpendicular to graphene can be trapped between the layers with the highest efficiency above or equal to 80% in the energy range of 40β90 eV for Ge ions and above 90% in the energy range of 40β70 eV for Pt ions. The energy range corresponding to the efficient trapping of ions in double-layer graphene is shifted toward higher energies upon tilting of the angle of incident ion beam
ΠΠΠΠ«Π¨ΠΠΠΠ ΠΠ€Π€ΠΠΠ’ΠΠΠΠΠ‘Π’Π ΠΠΠΠΠΠΠΠΠΠ― ΠΠΠ’ΠΠΠΠ«Π₯ ΠΠΠΠΠ₯ Π Π ΠΠ‘ ΠΠΠ ΠΠ₯ΠΠΠ’Π ΠΠΠΠΠ£Π¨ΠΠ«Π₯ Π¦ΠΠΠΠ Π Π ΠΠΠΠΠ ΠΠΠΠΠ Π
The modified algorithm of the adaptive compensating of the active noise jamming, based on usage of the recurrence estimation of inverse covariance matrix of jamming in the course of an self-tuning is considered. The matrix estimation is formed by a method of a serial regression (SRM), a consequence application of a lemma about inversing of a matrix to differential β to the difference equation for a rounded estimation of direct covariance matrix of jamming (CMJ). The single estimation of straight line CMJ is formed as result dyad products of the instant vectors of noises in handling channels. In partial channels the adaptive transversal filters with the self-tuning on value of a signal of an aggregate error are implemented.In article skeleton diagrams of devices of the compensating implemented by various methods are resulted. Mathematical modeling of operation of the algorithms, implemented by a method of the least squares (criterion of a minimum RMS error) and a method of a serial regression is performed.Results of mathematical modeling of operation of the device of compensating of active noises jamming in the conditions of the active radio-electronic counteraction at multipath propagation of signals both non-identical amplitude and phase characteristics of channels of handling are resulted. Optimal values of technical parameters of devices of compensating of the active noises jamming providing obtaining of demanded values of coefficient of suppression are given. The comparative analysis of indexes of efficiency of classical and offered algorithms of compensating is made. Advantage of algorithm of compensating of the active noises jamming, using the recurrence estimation of a inverse covariance matrix of jamming is shown.The algorithm of functioning on the basis of SRM allows to lower essentially requirements to specialized VLSI (FPGA) at implementation is hardware β program complexes for preprocessing of the radar, radio communication and radio β navigation information in the conditions of influence of the active noises jamming in the presence of effects of multipath propagation of signals, in the presence of delay of signals on an antenna system aperture, and also at unremovable technological dispersion amplitude and phase characteristics of the microwave of channels of handling.Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠΌΠΎΠ²ΡΡ
ΠΏΠΎΠΌΠ΅Ρ
, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΊΡΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΊΠΎΠ²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠΎΠΌΠ΅Ρ
Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°ΠΌΠΎΠ½Π°ΡΡΡΠΎΠΉΠΊΠΈ. ΠΡΠ΅Π½ΠΊΠ° ΠΌΠ°ΡΡΠΈΡΡ ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ (ΠΠΠ ), ΡΠ²Π»ΡΡΡΠ΅Π³ΠΎΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π»Π΅ΠΌΠΌΡ ΠΎΠ± ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΠΈ ΠΌΠ°ΡΡΠΈΡΡ ΠΊ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ³Π»Π°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΡΠΌΠΎΠΉ ΠΊΠΎΠ²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠΎΠΌΠ΅Ρ
(ΠΠΠ). Π Π°Π·ΠΎΠ²Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΡΠΌΠΎΠΉ ΠΠΠ ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΈΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΏΠΎΠΌΠ΅Ρ
Π² ΠΊΠ°Π½Π°Π»Π°Ρ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. Π ΠΏΠ°ΡΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠ°Π½Π°Π»Π°Ρ
ΡΠ΅Π°Π»ΠΈΠ·ΡΡΡΡΡ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΡΠ΅ ΡΡΠ°Π½ΡΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ»ΡΡΡΡ Ρ ΡΠ°ΠΌΠΎΠ½Π°ΡΡΡΠΎΠΉΠΊΠΎΠΉ ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΈΠ³Π½Π°Π»Π° ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΡΡ
Π΅ΠΌΡ ΡΡΡΡΠΎΠΉΡΡΠ² ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ, ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ.ΠΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ
ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² (ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ) ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ.ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π±ΠΎΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎΠΌΠ΅Ρ
Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΡΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ»ΡΡΠ΅Π²ΠΎΠΌ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΈ Π½Π΅ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½ΡΡ
Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΡΡ
ΠΈ ΡΠ°Π·ΠΎΠ²ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°Ρ
ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ. ΠΠ°Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΡΡΡΠΎΠΉΡΡΠ² ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎΠΌΠ΅Ρ
, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ
ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ
Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΡ. ΠΡΠΏΠΎΠ»Π½Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΏΠΎΠΌΠ΅Ρ
, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ΅Π³ΠΎ ΡΠ΅ΠΊΡΡΡΠ΅Π½ΡΠ½ΡΡ ΠΎΡΠ΅Π½ΠΊΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΊΠΎΠ²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠΎΠΌΠ΅Ρ
.ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΠΠ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ Π‘ΠΠΠ‘ (ΠΠΠΠ‘) ΠΏΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎ-ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ, ΡΠ°Π΄ΠΈΠΎΡΠ²ΡΠ·Π½ΠΎΠΉ ΠΈ ΡΠ°Π΄ΠΈΠΎΠ½Π°Π²ΠΈΠ³Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠΌΠΎΠ²ΡΡ
ΠΏΠΎΠΌΠ΅Ρ
ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΡΡΠ΅ΠΊΡΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ»ΡΡΠ΅Π²ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΏΠΎ ΡΠ°ΡΠΊΡΡΠ²Ρ Π°Π½ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ Π½Π΅ΡΡΡΡΠ°Π½ΠΈΠΌΠΎΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ°Π·Π±ΡΠΎΡΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΠΎ-ΡΠ°Π·ΠΎΠ²ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π‘ΠΠ§-ΡΡΠ°ΠΊΡΠ° ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ
Termination Reaction in the Anionic Polymerization of Methacrylonitrile
The anionic polymerization of methacrylonitrile initiated by
triethylphosphine in dimethylformamide was studied. Experimental
evidence for two mechanisms of termination reaction was obtained.
By addition of water or alcohol in polymerizing system the rate of
polymerization and molecular weight of polymethacrylon1itrile
decrease, which proves the termination reaction to be bimolecular
and proceed by interaction of the active carbanion with water or
alcohol. The rate constant for termination of free anions with water
was determined, k~,0 = 2.2 x 102 dm3 moP s-1β’ The termination
reaction could not be excluded by purification and prolonged drying
of all components of the system, which indicates that the second
mechanism of termination is operative as well. Conductivity measurements gave evidence for a monomolecular spontaneous reaction leading to deactivation of the anion
ΠΠΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ Π‘ΠΠΠ’ΠΠ ΠΠΠ’ΠΠΠ ΠΠΠΠΠΠΠΠΠ― Π‘ΠΠΠ Π₯ΠΠΠ£ΠΠΠΠΠΠ ΠΠΠ‘ΠΠΠΠΠ’ΠΠΠΠ ΠΠΠ’ΠΠ’ΠΠΠ¬ΠΠΠΠ ΠΠΠΠΠ ΠΠ’Π ΠΠ ΠΠ‘ΠΠΠΠ ΠΠΠΠΠΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠΠΠΠ
A method of analytical synthesis of an optimal controller for the terminal control task of supersonic unmanned aerial vehicles based on synergetic approach to the design of control systems for nonlinear multidimensional dynamic objects is considered.The article provides analytical expressions describing the algorithm for control the velocity vector position of a supersonic UAV, the simulation results and the comparative analysis of the proposed control algorithm with the modified method of proportional navigation.Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΠ½ΡΠ΅Π· ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΡ
Π·Π²ΡΠΊΠΎΠ²ΡΠΌΠΈ Π±Π΅ΡΠΏΠΈΠ»ΠΎΡΠ½ΡΠΌΠΈ Π»Π΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅ΡΠ½ΡΠΌΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ. ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΠΌΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΡΡ
ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠΉ β Π°ΡΡΡΠ°ΠΊΡΠΎΡΠΎΠ², Π½Π° ΠΊΠΎΡΠΎΡΡΡ
Π½Π°ΠΈΠ»ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ ΠΎΠ±ΡΠΈΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ (ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅, Π±Π°Π»Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π΄Ρ.) ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΈ ΡΠ°ΡΡΠ½ΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΡΡ ΠΆΠ΅Π»Π°Π΅ΠΌΡΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΈ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅ΡΡΡ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡ β ΠΎΠ±ΡΠ΅ΠΊΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ.ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌΠ²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²Π΅ΡΡ
Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ Π±Π΅ΡΠΏΠΈΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π½Π°Π²ΠΈΠ³Π°ΡΠΈΠΈ
Permanent annihilation of thermally activated defects which limit the lifetime of float-zone silicon
We have observed very large changes in the minority carrier lifetime when high purity float-zone (FZ) silicon wafers are subject to heat-treatments in the range of 200β 1100ΛC. Recombination centres were found to become activated upon annealing at 450β700ΛC, causing significant reductions in the bulk lifetime, detrimental for high efficiency solar cells and stable high powered devices. Photoluminescence imaging of wafers annealed at 500ΛC revealed concentric circular patterns, with lower lifetimes occurring in the centre, and higher lifetimes around the periphery. Deep level transient spectroscopy measurements on samples extracted from the centre of an n-type FZ silicon wafer annealed at 500ΛC revealed a large variety of defects with activation energies ranging between 0.16β 0.36eV. Our measurements indicate that vacancy related defects are causing the severe degradation in lifetime when FZ wafers are annealed at 450β700ΛC. Upon annealing FZ silicon at temperatures >800Β°C, the lifetime is completely recovered, whereby the defect-rich regions vanish and do not reappear (permanently annihilated). Our results indicate that, in general, as-grown FZ silicon should not be assumed to be defect lean, nor can it be assumed that the bulk lifetime will remain stable during thermal processing, unless annealed at temperatures >1000Β°C
The Dynamics of Zeroth-Order Ultrasensitivity: A Critical Phenomenon in Cell Biology
It is well known since the pioneering work of Goldbeter and Koshland [Proc.
Natl. Acad. Sci. USA, vol. 78, pp. 6840-6844 (1981)] that cellular
phosphorylation- dephosphorylation cycle (PdPC), catalyzed by kinase and
phosphatase under saturated condition with zeroth order enzyme kinetics,
exhibits ultrasensitivity, sharp transition. We analyse the dynamics aspects of
the zeroth order PdPC kinetics and show a critical slowdown akin to the phase
transition in condensed matter physics. We demonstrate that an extremely
simple, though somewhat mathematically "singular" model is a faithful
representation of the ultrasentivity phenomenon. The simplified mathematical
model will be valuable, as a component, in developing complex cellular
signaling network theory as well as having a pedagogic value.Comment: 8 pages, 3 figure
90 Years to the Society of Anatomists, Histologists and Embryologists
Scientific research of the members of society in 90 years are diverse and they are numerous, they dedicated to questions of ethnic and integrative anthropology, to study of versions and anomalies in different systems of the organs of man, to study of cardiovascular and nervous systems in the aspect dependent on age and with the pathology, to development and the regeneration of the cardiovascular system, to questions of anatomical and anthropological equipment, comparative and veterinary anatomy. The members of society actively participated in the work of the forums of morphologists and clinicians. Was formed the sufficiently authoritative Rostov school of morphologists, whose representatives led departments in Russia cities and abroad
Energy state distributions of the P(b) centers at the (100), (110), and (111) Si/SiO(2) interfaces investigated by Laplace deep level transient spectroscopy
The energy distribution of the P(b) centers at the Si/SiO(2) interface has been determined using isothermal laplace deep level transient spectroscopy. For the (111) and (110) interface orientations, the distributions are similar and centered at 0.38 eV below the silicon conduction band. This is consistent with only P(b0) states being present. For the (100) orientation, two types of the interface states are observed: one similar to the (111) and (110) orientations while the other has a negative-U character in which the emission rate versus surface potential dependence is qualitatively different from that observed for P(b0) and is presumed to be P(b1). (C) 2008 American Institute of Physics. (DOI: 10.1063/1.2939001
ΠΠΠΠ«Π¨ΠΠΠΠ Π’ΠΠ§ΠΠΠ‘Π’Π ΠΠ¦ΠΠΠΠΠΠΠΠ― ΠΠΠΠ ΠΠΠΠΠ’ ΠΠΠͺΠΠΠ’Π Π ΠΠΠΠΠΠΠΠΠΠ¦ΠΠΠΠΠΠ Π ΠΠΠΠΠΠΠΠΠ¦ΠΠΠΠΠΠ Π‘ΠΠ‘Π’ΠΠΠ Π‘ ΠΠ ΠΠΠΠΠ«Π ΠΠ£ΠΠΠ’ΠΠ ΠΠΠΠΠ£Π¨ΠΠΠΠ ΠΠΠΠΠ ΠΠΠΠΠΠ―
The dependence of the accuracy of the object's coordinates estimation on the relative position of transmitting and receiving points of the multi-position radar system was studied. A way to increase of the accuracy of the object's coordinates estimation for small elevation angles by placement of the one receiving positions on the aerial vehicle was proposed.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΎΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠ΅Π³ΠΎ ΠΈ ΠΏΡΠΈΠ΅ΠΌΠ½ΡΡ
ΠΏΡΠ½ΠΊΡΠΎΠ² ΡΡΠΌΠΌΠ°ΡΠ½ΠΎ-ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎ-Π΄Π°Π»ΡΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ (ΠΠΠ ΠΠ‘). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΏΠΎΡΠΎΠ± ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π΄Π»Ρ ΠΌΠ°Π»ΡΡ
ΡΠ³Π»ΠΎΠ² ΠΌΠ΅ΡΡΠ° Π·Π° ΡΡΠ΅Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π½Π° Π»Π΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΡΠ΅Π΄ΡΡΠ²Π΅
- β¦