767 research outputs found

    Conductivity of Doped Two-Leg Ladders

    Full text link
    Recently, conductivity measurements were performed on the hole-doped two-leg ladder material Sr_{14-x}Ca_xCu_{24}O_{41}. In this work, we calculate the conductivity for doped two-leg ladders using a model of hole-pairs forming a strongly correlated liquid - a single component Luttinger liquid - in the presence of disorder. Quantum interference effects are handled using renormalization group methods. We find that our model can account for the low energy features of the experimental results. However, at higher energies the experiments show deviations from the predictions of this model. Using the results of our calculations as well as results on the ground state of doped two-leg ladders, we suggest a scenario to account for the higher energy features of the experimental results.Comment: 5 pages, 3 postscript figure

    Metal-Insulator Transition Accompanied with a Charge Ordering in the One-dimensional t-J' Model

    Full text link
    We study the metal-insulator transition accompanied with a charge ordering in the one-dimensional (1D) t-J' model at quarter filling by the density matrix renormalization group method. In this model the nearest-neighbor hopping energy t competes with the next-nearest-neighbor exchange energy J'. We have found that a metal-insulator transition occurs at a finite value of t/J'; (t/J')_C = 0.18 and the transition is of first order. In the insulating phase for small t/J', there is an alternating charge ordering and the system behaves as a 1D quantum Heisenberg antiferromagnet. The metallic side belongs to the universality class of the Tomonaga-Luttinger liquids. The quantum phase transition is an example of melting of the 1D quantum Heisenberg antiferromagnet.Comment: 4 pages, 6 Postscript figures, REVTeX, submitted to Phys. Rev.

    Benzo-dipteridine derivatives as organic cathodes for Li- and Na-ion batteries

    Get PDF
    Organic-based electrodes for Li- and Na-ion batteries present attractive alternatives to commonly applied inorganic counterparts which can often carry with them supply-chain risks, safety concerns with thermal runaway, and adverse environmental impact. The ability to chemically direct the structure of organic electrodes through control over functional groups is of particular importance, as this provides a route to fine-tune electrochemical performance parameters. Here, we report two benzo-dipteridine derivatives, BF-Me2 and BF-H2, as high-capacity electrodes for use in Li- and Na-ion batteries. These moieties permit binding of multiple Li-ions per molecule while simultaneously ensuring low solubility in the supporting electrolyte, often a precluding issue with organic electrodes. Both display excellent electrochemical stability, with discharge capacities of 142 and 182 mAh g–1 after 100 cycles at a C/10 rate and Coulombic efficiencies of 96% and ∼ 100% demonstrated for BF-Me2 and BF-H2, respectively. The application of a Na-ion cell has also been demonstrated, showing discharge capacities of 88.8 and 137 mAh g–1 after 100 cycles at a C/2 rate for BF-Me2 and BF-H2, respectively. This work provides an encouraging precedent for these and related structures to provide versatile, high-energy density, and long cycle-life electrochemical energy storage materials

    Magnetic excitations and structural change in the S=1/2 quasi-one-dimensional magnet Sr_{14-x}Y_{x}Cu_{24}O_{41} (0<x<1)

    Full text link
    Neutron scattering measurements have been performed on the S=1/2 quasi-one-dimensional system Sr_{14-x}Y_{x}Cu_{24}O_{41}, which has both simple chains and two-leg ladders of copper ions. We observed that when a small amount of yttrium is substituted for strontium, which is expected to reduce the number of holes, the dimerized state and the structure in the chain are changed drastically. The inelastic peaks originating from the dimerized state of the chain becomes broader in energy but not in momentum space. This implies that the dimerized state becomes unstable but the spin correlations are unchanged with yttrium substitution. Furthermore, it was observed that nuclear Bragg peak intensities originating from the chain show strong temperature and x dependence, which suggests that the chains slide along the c axis as temperature and x are varied.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
    • …
    corecore